首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
2.
Animals that undergo prolonged dormancy experience minimal muscle disuse atrophy (MDA) compared to animals subjected to artificial immobilisation over shorter timeframes. An association between oxidative stress and MDA suggests that metabolic depression presumably affords dormant animals some protection against muscle disuse. Because aerobic metabolism is temperature sensitive, we proposed that MDA in dormant (aestivating) ectotherms would be enhanced at elevated temperatures. In the green‐striped burrowing frog, Cyclorana alboguttata, the thermal sensitivity of skeletal muscle metabolic rate is muscle‐specific. We proposed that the degree of atrophy experienced during aestivation would correlate with the thermal sensitivity of muscle metabolic rate such that muscles with a relatively high metabolic rate at high temperatures would experience more disuse atrophy. To test this hypothesis, we examined the effect of temperature and aestivation on the extent of MDA in two functionally different muscles: the M. gastrocnemius (jumping muscle) and M. iliofibularis (non‐jumping muscle), in C. alboguttata aestivating at 24 or 30°C for 6 months. We compared a range of morphological parameters from muscle cross‐sections stained with succinic dehydrogenase to show that muscle‐specific patterns of disuse atrophy were consistent with the relative rates of oxygen consumption of those muscle types. However, despite muscle‐specific differences in thermal sensitivity of metabolic rate, aestivation temperature did not influence the extent of atrophy in either muscle. Our results suggest that the muscles of frogs aestivating at high temperatures are defended against additional atrophy ensuring protection of muscle function during long periods of immobilisation. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Green-striped burrowing frogs (Cyclorana alboguttata) can depress their resting metabolism by more than 80% during aestivation. Previous studies have shown that this species is able to withstand long periods of immobilisation during aestivation while apparently maintaining whole muscle mass and contractile performance. The aim of this study was to determine the effect of prolonged aestivation on the levels of metabolic enzymes (CCO, LDH and CS) in functionally distinct skeletal muscles (cruralis, gastrocnemius, sartorius, iliofibularis and rectus abdominus) and liver of C. alboguttata. CS activity was significantly reduced in all tissues except for the cruralis, gastrocnemius and the liver. LDH activity was significantly reduced in the sartorius and rectus abdominus, but remained at control (active) levels in the other tissues. CCO activity was significantly reduced in the gastrocnemius and rectus abdominus, and unchanged in the remaining tissues. Muscle protein was significantly reduced in the sartorius and iliofibularis during aestivation, and unchanged in the remaining muscles. The results suggest that the energy pathways involved in the production and consumption of ATP are remodelled during prolonged aestivation but selective. Remodelling and subsequent down-regulation of metabolic activity seem to target the smaller non-jumping muscles, while the jumping muscles retain enzyme activities at control levels during aestivation. These results suggest a mechanism by which aestivating C. alboguttata are able to maintain metabolic depression while ensuring that the functional capacity of critical muscles is not compromised upon emergence from aestivation.  相似文献   

4.
5.
6.
We examined several morphological parameters of the gastrointestinal tract, digesta passage rates, and nutrient assimilation efficiencies of Green-striped Burrowing frogs (Cyclorana alboguttata) following prolonged fasting during three months of aestivation and compared these with frogs that had been continuously fed. Whole animal digesta passage rates were significantly reduced following three months aestivation as a result of a decreased digesta evacuation rate from the stomach. Furthermore, food was selectively retained in the small intestine for an increased time following three months of aestivation. Overall digestibility of food and nitrogen, carbon, and energy extraction efficiencies were not significantly different from control values following three months of aestivation. These findings suggest that C. alboguttata employs reduced digesta passage rates so as to maximize nutrient assimilation efficiency following prolonged food deprivation during aestivation.  相似文献   

7.
During aestivation, the gut of the green-striped burrowing frog, Cyclorana alboguttata undergoes significant morphological down-regulation. Despite the potential impact such changes might have on the re-feeding efficiency of these animals following aestivation, they appear to be as efficient at digesting their first meals as active, non-aestivating animals. Such efficiency might come about by the rapid restoration of intestinal morphology with both arousal from aestivation and the initial stages of re-feeding. Consequently, this study sought to determine what morphological changes to the intestine accompany arousal and re-feeding following 3 months of aestivation. Arousal from aestivation alone had a marked impact on many morphological parameters, including small and large intestine masses, small intestinal length, LF heights, enterocyte cross-sectional area and microvilli height and density. In addition, the onset of re-feeding was correlated with an immediate reversal of many morphological parameters affected by 3 months of aestivation. Those parameters that had not returned to control levels within 36 h of feeding generally had returned to control values by the completion of digestion (i.e. defecation of the meal). Re-feeding was also associated with several changes in enterocyte morphology including the incorporation in intracytoplasmic lipid droplets and the return of enterocyte nuclear material to the 'active' euchromatin state. In conclusion, morphological changes to the gut of aestivating frogs which occur during aestivation are transitory and rapidly reversible with both arousal from aestivation and re-feeding. The proximate causes behind these transitions and their functional significance are discussed.  相似文献   

8.
This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.  相似文献   

9.
The green striped burrowing frog, Cyclorana alboguttata, spends, on average, nine to ten months of every year in aestivation. Recently, C. alboguttata has been the focus of much investigation regarding the physiological processes involved in aestivation, yet our understanding of this frog's capacity to metabolically depress remains limited. This study aimed to extend our current knowledge of metabolic depression during aestivation in C. alboguttata. C. alboguttata reduced whole animal metabolism by 82% within 5 weeks of aestivation. The effects of aestivation on mass specific in vitro tissue metabolic rate (VO2) varied among individual organs, with muscle and liver slices showing significant reductions in metabolism; kidney VO2 was elevated and there was no change in the VO2 of small intestine tissue slices. Organ size was also affected by aestivation, with significant reductions in the mass of all tissues, except the gastrocnemius. These reductions in organ size, combined with changes in mass specific VO2 of tissue slices, resulted in further energy savings to aestivating animals. This study shows that C. alboguttata is capable of selectively down- or up-regulating individual tissues, using both changes in metabolic rate and morphology. This strategy allows maximal energy savings during aestivation without compromising organ functionality and survival at arousal.  相似文献   

10.
Skeletal muscle atrophy is a process in which protein degradation exceeds protein synthesis, resulting in a decrease of the muscle's physiological cross-sectional area and mass, and is often a serious consequence of numerous health problems. We used the isotope-coded affinity tag (ICAT) labelling approach and MS-MS to protein profile cytosolic subcellular fractions from mouse tibialis anterior skeletal muscle undergoing 0, 4, 8, or 16 days of immobilisation-induced atrophy. For the validation of peptide and protein identifications statistical algorithms were applied to the sequence database search results in order to obtain consistent sensitivity/error rates for protein and peptide identifications at each immobilisation time point. In this study, we identified and quantified a large number of mouse skeletal muscle proteins. At a protein probability (P) of P> or = 0.9 (corresponding to a false positive error rate of less than 1%) 807 proteins were identified (231, 226, 217 for 4, 8, 16 days of immobilisation and 133 for the control sample, respectively), from which 51 displayed altered protein abundance with atrophy. Due to randomness of data acquisition, a full time course could be generated only for 62 proteins, most of which displayed unchanged protein abundance. In spite of this, useful information about dataset characteristics and underlying biological processes could be obtained through gene over-representation analysis. 20 gene categories-mainly but not exclusively encoded by the subset of overlapping proteins--were consistently found to be significantly (p < 0.05) over-represented in all 4 sub-datasets.  相似文献   

11.
12.
In this study we examined the influence of complete spinal cord injury (SCI) on affected skeletal muscle morphology within 6 months of SCI. Magnetic resonance (MR) images of the leg and thigh were taken as soon as patients were clinically stable, on average 6 weeks post injury, and 11 and 24 weeks after SCI to assess average muscle cross-sectional area (CSA). MR images were also taken from nine able-bodied controls at two time points separated from one another by 18 weeks. The controls showed no change in any variable over time. The patients showed differential atrophy (P = 0.0001) of the ankle plantar or dorsi flexor muscles. The average CSA of m. gastrocnemius and m. soleus decreased by 24% and 12%, respectively (P = 0.0001). The m. tibialis anterior CSA showed no change (P = 0.3644). As a result of this muscle-specific atrophy, the ratio of average CSA of m. gastrocnemius to m. soleus, m. gastrocnemius to m. tibialis anterior and m. soleus to m. tibialis anterior declined (P = 0.0001). The average CSA of m, quadriceps femoris, the hamstring muscle group and the adductor muscle group decreased by 16%, 14% and 16%, respectively (P< or =0.0045). No differential atrophy was observed among these thigh muscle groups, thus the ratio of their CSAs did not change (P = 0.6210). The average CSA of atrophied skeletal muscle in the patients was 45-80% of that of age- and weight-matched able-bodied controls 24 weeks after injury. In conclusion, the results of this study suggest that there is marked loss of contractile protein early after SCI which differs among affected skeletal muscles. While the mechanism(s) responsible for loss of muscle size are not clear, it is suggested that the development of muscular imbalance as well as diminution of muscle mass would compromise force potential early after SCI.  相似文献   

13.
A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.  相似文献   

14.
This study investigates the effects of aestivation on body water content, body mass, acid mucopolysaccharide (AMPS) and some of its degrading enzymes in different tissues for some Australian desert frogs. The AMPS component of the liver, kidney, skin and cocoon alter during aestivation to help retain water, which is unchanged in most tissues of all frog species, and to protect the frogs from desiccation during extended periods of aestivation. Hepatic AMPS was unaltered in Cyclorana maini, C. platycephala and Neobatrachus sutor but increased significantly after 2 months of aestivation in C. australis. The level of AMPS in the kidney was elevated in all four frog species after 5 months of aestivation. Skin AMPS content in the skin of awake frogs decreases with aestivation period and increases in the cocoon. AMPS in the cocoon probably works as a cement between the cocoons' layers and its physical presence presumably contributes to preventing water flux. Changes in AMPS content in different tissues were accompanied by significant changes in both hyaluronidase and beta-glucuronidase activities, which play an important role in AMPS metabolism. Alcian blue staining of control and digested skin of C. australis and C. platycephala with testicular hyaluronidase indicated the presence of AMPS, concentrated in a thin layer (called ground substance, GS) located between stratum compactum and stratum spongiosum, and acid mucin concentrated in the mucous glands and in a 'tubular' structure which could be observed in the epidermal layer. Hyaluronidase digestion of the cocoon slightly changed the Alcian Blue colour, suggesting the presence of a large amount of acid mucin similar to that found in the skin mucous gland. The results of this study present data for the redistribution of AMPS, which may help in reducing water loss across the cocoon and reabsorption of water in the kidney during aestivation.  相似文献   

15.
The effects of short‐term fasting and prolonged fasting during aestivation on the morphology of the proximal small intestine and associated organs were investigated in the green‐striped burrowing frog, Cyclorana alboguttata (Anura: Hylidae). Animals were fasted for 1 week while active or for 3–9 months during aestivation. Short‐duration fasting (1 week) had little effect on the morphology of the small intestine, whilst prolonged fasting during aestivation induced marked enteropathy including reductions in intestinal mass, length and diameter, longitudinal fold height and tunica muscularis thickness. Enterocyte morphology was also affected markedly by prolonged fasting: enterocyte cross‐sectional area and microvillous height were reduced during aestivation, intercellular spaces were visibly reduced and the prevalence of lymphocytes amongst enterocytes was increased. Mitochondria and nuclei were also affected by 9 months of aestivation with major disruptions to mitochondrial cristae and increased clumping of nuclear material and increased infolding of the nuclear envelope. The present study demonstrates that the intestine of an aestivating frog responds to prolonged food deprivation during aestivation by reducing in size, presumably to reduce the energy expenditure of the organ.  相似文献   

16.
Changes in membrane lipid composition (membrane remodelling) have been associated with metabolic depression in some aestivating snails but has not been studied in aestivating frogs. This study examined the membrane phospholipid composition of two Australian aestivating frog species Cyclorana alboguttata and Cyclorana australis. The results showed no major membrane remodelling of tissue in either frog species, or in mitochondria of C. alboguttata due to aestivation. Mitochondrial membrane remodelling was not investigated in C. australis. Where investigated in C. alboguttata, total protein and phospholipid content, and citrate synthase (CS) and cytochrome c oxidase (CCO) activities in tissues and mitochondria mostly did not change with aestivation in liver. In skeletal muscle, however, CS and CCO activities, mitochondrial and tissue phospholipids, and mitochondrial protein decreased with aestivation. These decreases in muscle indicate that skeletal muscle mitochondrial content may decrease during aestivation. Na+K+ATPase activity of both frog species showed no effect of aestivation. In C. alboguttata different fat diets had a major effect on both tissue and mitochondrial phospholipid composition indicating an ability to remodel membrane composition that is not utilised in aestivation. Therefore, changes in lipid composition associated with some aestivating snails do not occur during aestivation in these Australian frogs.  相似文献   

17.
Although insulin-like growth factor 1 (IGF 1) has been used in immobilizated muscles to prevent muscle atrophy, its effects on muscle atrophy after brain ischemia are not known. This study aimed to determine the effects of IGF 1 on preventing muscle atrophy in rats with brain ischemia. Middle cerebral artery occlusion (MCAO) was used to induce the brain ischemia. In the first part of the study, rats were assigned to sham control, ischemic control, and ischemia with different dosages of IGF 1 injection groups to determine the optimal dosage of IGF 1 on preventing muscle atrophy after brain ischemia. In the second part of the study, rats were assigned to sham control, ischemic control, ischemia with IGF 1, or with IGF 1 receptor inhibitor (AG1024) injection groups to determine the specificity of IGF 1 on preventing muscle atrophy after brain ischemia. IGF 1 or AG1024 was injected locally to calf muscles and anterior tibialis (TA) starting from one day after brain ischemia and injections were carried out every other day for 4 times. Muscle weight and myosin heavy chain (MHC) expression in both red (red gastrocnemius and soleus) and white (white gastrocnemius and TA) muscles were significantly decreased after brain ischemia. With at least moderate-dosage (200 ng/100 microl PBS) IGF 1 injection, the muscle weight and MHC protein could be restored in both red and white muscles resulting in better motor performance. However, the high-dose injection of IGF 1 (400 ng/100 microl PBS) did not result in further effects. IGF 1 increased the expression of p-Akt, but such effects were prevented by AG1024 resulting in muscle atrophy and poor motor function. In conclusion, peripheral application of IGF 1 not only prevented muscle atrophy but also enhanced motor function in rats with brain ischemia. The IGF 1-induced PI3K/Akt pathways are important for preventing muscle atrophy induced by brain ischemia.  相似文献   

18.
Heart failure is often characterized by skeletal muscle atrophy. The mechanisms underlying muscle wasting, however, are not fully understood. We studied 30 Dahl salt-sensitive rats (10 male, 20 female) fed either a high-salt (HS; n = 15) or a low-salt (LS; n = 15) diet. This strain develops cardiac hypertrophy and failure when fed a HS diet. LS controls were matched to HS rats for gender and duration of diet. Body mass, food intake, and muscle mass and composition were measured. Skeletal muscle protein synthesis was measured by isotope dilution. An additional group of 27 rats (HS, n = 16; LS; n = 11) were assessed for expression of genes regulating protein breakdown and apoptosis. Gastrocnemius and plantaris muscles weighed less (16 and 22%, respectively) in HS than in LS rats (P < 0.01). No differences in soleus or tibialis anterior weights were found. Differences in muscle mass were abolished after data were expressed relative to body size, because HS rats tended (P = 0.094) to weigh less. Lower body mass in HS rats was related to a 16% reduction (P < 0.01) in food intake. No differences in muscle protein or DNA content, the protein-to-DNA ratio, or muscle protein synthesis were found. Finally, no differences in skeletal muscle gene expression were found to suggest increased protein breakdown or apoptosis in HS rats. Our results suggest that muscle wasting in this model of heart failure is not associated with alterations in skeletal muscle metabolism. Instead, muscle atrophy was related to reduced body weight secondary to decreased food intake. These findings argue against the notion that heart failure is characterized by a skeletal muscle myopathy that predisposes to atrophy.  相似文献   

19.
The density and abundance of arid-dwelling taxa often change significantly in response to precipitation fluctuations and the abundance of their predators. The survival and density of burrowing arthropods and their burrows in arid environments following prolonged dry periods and subsequent rains is poorly understood, as is the potential influence of reintroductions of their predators, such as fossorial mammals. The persistence of these arthropods and their burrows may be important for other species that rely on them for food or use their burrows for shelter. In this study, we examined the density of burrowing and ground-nesting arthropods and their burrows in Australia's Strzelecki Desert over two years between 2019 and 2021. This period spanned the tail-end of the worst drought on record and subsequent drought-breaking rains. We employed a Before-After Control-Impact (BACI) study design to examine the short-term effects of a fossorial mammal reintroduction of the greater bilby (Macrotis lagotis) into predator-free fenced exclosures and used an inspection camera to detect the presence of spiders and other taxa within individually marked burrows. We observed the largest changes in arthropod abundance and burrow density between a period that encompassed a third consecutive summer in drought and the commencement of drought-breaking rains, with some taxa declining by as much as 77% (p < 0.001). While the density of harvester ant middens erupted over this time, the density of tarantulas, trapdoor spiders and scorpions declined significantly. The greater bilby reintroduction had no short-term effect on the densities of the arthropods or their burrows, but their arrival may have implications on their post-drought recovery. Further studies are needed to determine if the significant declines in arthropod populations and burrows are reflective of normal boom-bust population dynamics due to the poor natural history knowledge of the arthropods we examined.  相似文献   

20.
The role of the renin-angiotensin system (RAS) in vasoregulation is well established, but a localized RAS exists in multiple tissues and exerts diverse functions including autonomic control and thermogenesis. The role of the RAS in the maintenance and function of skeletal muscle is not well understood, especially the role of angiotensin peptides, which appear to contribute to muscle atrophy. We tested the hypothesis that mice lacking the angiotensin type 1A receptor (AT(1A)(-/-)) would exhibit enhanced whole body and skeletal muscle function and improved regeneration after severe injury. Despite 18- to 20-wk-old AT(1A)(-/-) mice exhibiting reduced muscle mass compared with controls (P < 0.05), the tibialis anterior (TA) muscles produced a 25% higher maximum specific (normalized) force (P < 0.05). Average fiber cross-sectional area (CSA) and fiber oxidative capacity was not different between groups, but TA muscles from AT(1A)(-/-) mice had a reduced number of muscle fibers as well as a higher proportion of type IIx/b fibers and a lower proportion of type IIa fibers (P < 0.05). Measures of whole body function (grip strength, rotarod performance, locomotor activity) were all improved in AT(1A)(-/-) mice (P < 0.05). Surprisingly, the recovery of muscle mass and fiber CSA following myotoxic injury was impaired in AT(1A)(-/-) mice, in part by impaired myoblast fusion, prolonged collagen infiltration and inflammation, and delayed expression of myogenic regulatory factors. The findings support the therapeutic potential of RAS inhibition for enhancing whole body and skeletal muscle function, but they also reveal the importance of RAS signaling in the maintenance of muscle mass and for normal fiber repair after injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号