首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Computational fluid dynamics (CFD) simulations using medical-image-based anatomical vascular geometry are now gaining clinical relevance. This study aimed at validating the CFD methodology for studying cerebral aneurysms by using particle image velocimetry (PIV) measurements, with a focus on the effects of small geometric variations in aneurysm models on the flow dynamics obtained with CFD. METHOD OF APPROACH: An experimental phantom was fabricated out of silicone elastomer to best mimic a spherical aneurysm model. PIV measurements were obtained from the phantom and compared with the CFD results from an ideal spherical aneurysm model (S1). These measurements were also compared with CFD results, based on the geometry reconstructed from three-dimensional images of the experimental phantom. We further performed CFD analysis on two geometric variations, S2 and S3, of the phantom to investigate the effects of small geometric variations on the aneurysmal flow field. Results. We found poor agreement between the CFD results from the ideal spherical aneurysm model and the PIV measurements from the phantom, including inconsistent secondary flow patterns. The CFD results based on the actual phantom geometry, however, matched well with the PIV measurements. CFD of models S2 and S3 produced qualitatively similar flow fields to that of the phantom but quantitatively significant changes in key hemodynamic parameters such as vorticity, positive circulation, and wall shear stress. CONCLUSION: CFD simulation results can closely match experimental measurements as long as both are performed on the same model geometry. Small geometric variations on the aneurysm model can significantly alter the flow-field and key hemodynamic parameters. Since medical images are subjected to geometric uncertainties, image-based patient-specific CFD results must be carefully scrutinized before providing clinical feedback.  相似文献   

2.
Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV) measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.  相似文献   

3.
We developed a methodology to assess and compare the prediction quality of cardiovascular models for patient-specific simulations calibrated with uncertainty-hampered measurements. The methodology was applied in a one-dimensional blood flow model to estimate the impact of measurement uncertainty in wall model parameters on the predictions of pressure and flow in an arterial network. We assessed the prediction quality of three wall models that have been widely used in one-dimensional blood flow simulations. A 37-artery network, previously used in one experimental and several simulation studies, was adapted to patient-specific conditions with a set of three clinically measurable inputs: carotid–femoral wave speed, mean arterial pressure and area in the brachial artery. We quantified the uncertainty of the predicted pressure and flow waves in eight locations in the network and assessed the sensitivity of the model prediction with respect to the measurements of wave speed, pressure and cross-sectional area. Furthermore, we developed novel time-averaged sensitivity indices to assess the contribution of model parameters to the uncertainty of time-varying quantities (e.g., pressure and flow). The results from our patient-specific network model demonstrated that our novel indices allowed for a more accurate sensitivity analysis of time-varying quantities compared to conventional Sobol sensitivity indices.  相似文献   

4.
The bicuspid aortic valve (BAV) is a common congenital malformation of the aortic valve (AV) affecting 1% to 2% of the population. The BAV is predisposed to early degenerative calcification of valve leaflets, and BAV patients constitute 50% of AV stenosis patients. Although evidence shows that genetic defects can play a role in calcification of the BAV leaflets, we hypothesize that drastic changes in the mechanical environment of the BAV elicit pathological responses from the valve and might be concurrently responsible for early calcification. An in vitro model of the BAV was constructed by surgically manipulating a native trileaflet porcine AV. The BAV valve model and a trileaflet AV (TAV) model were tested in an in vitro pulsatile flow loop mimicking physiological hemodynamics. Laser Doppler velocimetry was used to make measurements of fluid shear stresses on the leaflet of the valve models using previously established methodologies. Furthermore, particle image velocimetry was used to visualize the flow fields downstream of the valves and in the sinuses. In the BAV model, flow near the leaflets and fluid shear stresses on the leaflets were much more unsteady than for the TAV model, most likely due to the moderate stenosis in the BAV and the skewed forward flow jet that collided with the aorta wall. This additional unsteadiness occurred during mid- to late-systole and was composed of cycle-to-cycle magnitude variability as well as high-frequency fluctuations about the mean shear stress. It has been demonstrated that the BAV geometry can lead to unsteady shear stresses under physiological flow and pressure conditions. Such altered shear stresses could play a role in accelerated calcification in BAVs.  相似文献   

5.
Blood flow patterns in the human left ventricle (LV) have shown relation to cardiac health. However, most studies in the literature are limited to a few patients and results are hard to generalize. This study aims to provide a new framework to generate more generalized insights into LV blood flow as a function of changes in anatomy and wall motion. In this framework, we studied the four-dimensional blood flow in LV via computational fluid dynamics (CFD) in conjunction with a statistical shape model (SSM), built from segmented LV shapes of 150 subjects. We validated results in an in-vitro dynamic phantom via time-resolved optical particle image velocimetry (PIV) measurements. This combination of CFD and the SSM may be useful for systematically assessing blood flow patterns in the LV as a function of varying anatomy and has the potential to provide valuable data for diagnosis of LV functionality.  相似文献   

6.
Verifying numerical predictions with experimental data is an important aspect of any modeling studies. In the case of the lung, the absence of direct in vivo flow measurements makes such verification almost impossible. We performed computational fluid dynamics (CFD) simulations in a 3D scaled-up model of an alveolated bend with rigid walls that incorporated essential geometrical characteristics of human alveolar structures and compared numerical predictions with experimental flow measurements made in the same model by particle image velocimetry (PIV). Flow in both models was representative of acinar flow during normal breathing (0.82ml/s). The experimental model was built in silicone and silicone oil was used as the carrier fluid. Flow measurements were obtained by an ensemble averaging procedure. CFD simulation was performed with STAR-CCM+ (CD-Adapco) using a polyhedral unstructured mesh. Velocity profiles in the central duct were parabolic and no bulk convection existed between the central duct and the alveoli. Velocities inside the alveoli were approximately 2 orders of magnitude smaller than the mean velocity in the central duct. CFD data agreed well with those obtained by PIV. In the central duct, data agreed within 1%. The maximum simulated velocity along the centerline of the model was 0.5% larger than measured experimentally. In the alveolar cavities, data agreed within 15% on average. This suggests that CFD techniques can satisfactorily predict acinar-type flow. Such a validation ensure a great degree of confidence in the accuracy of predictions made in more complex models of the alveolar region of the lung using similar CFD techniques.  相似文献   

7.
Convective respiratory flows in the pulmonary acinus and their influence on the fate of inhaled particles are typically studied using computational fluid dynamics (CFD) or scaled-up experimental models. However, experiments that replicate several generations of the acinar tree while featuring cyclic wall motion have not yet been realized. Moreover, current experiments generally capture only flow dynamics, without inhaled particle dynamics, due to difficulties in simultaneously matching flow and particle dynamics. In an effort to overcome these limitations, we introduce a novel microfluidic device mimicking acinar flow characteristics directly at the alveolar scale. The model features an anatomically-inspired geometry that expands and contracts periodically with five dichotomously branching airway generations lined with alveolar-like cavities. We use micro-particle image velocimetry with a glycerol solution as the carrying fluid to quantitatively characterize detailed flow patterns within the device and reveal experimentally for the first time a gradual transition of alveolar flow patterns along the acinar tree from recirculating to radial streamlines, in support of hypothesized predictions from past CFD simulations. The current measurements show that our microfluidic system captures the underlying characteristics of the acinar flow environment, including Reynolds and Womersley numbers as well as cyclic wall displacements and alveolar flow patterns at a realistic length scale. With the use of air as the carrying fluid, our miniaturized platform is anticipated to capture both particle and flow dynamics and serve in the near future as a promising in vitro tool for investigating the mechanisms of particle deposition deep in the lung.  相似文献   

8.
Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact cause and mechanism of the progression of AV calcification is unknown, although mechanical forces have been known to play a role. It is thus important to characterize the mechanical environment of the AV. In the current study, we establish a methodology of measuring shear stresses experienced by the aortic surface of the AV leaflets using an in vitro valve model and adapting the laser Doppler velocimetry (LDV) technique. The valve model was constructed from a fresh porcine aortic valve, which was trimmed and sutured onto a plastic stented ring, and inserted into an idealized three-lobed sinus acrylic chamber. Valve leaflet location was measured by obtaining the location of highest back-scattered LDV laser light intensity. The technique of performing LDV measurements near to biological surfaces as well as the leaflet locating technique was first validated in two phantom flow systems: (1) steady flow within a straight tube with AV leaflet adhered to the wall, and (2) steady flow within the actual valve model. Dynamic shear stresses were then obtained by applying the techniques on the valve model in a physiologic pulsatile flow loop. Results show that aortic surface shear stresses are low during early systole (<5 dyn/cm2) but elevated to its peak during mid to late systole at about 18-20 dyn/cm2. Low magnitude shear stress (<5 dyn/cm2) was observed during early diastole and dissipated to zero over the diastolic duration. Systolic shear stress was observed to elevate only with the formation of sinus vortex flow. The presented technique can also be used on other in vitro valve models such as congenitally geometrically malformed valves, or to investigate effects of hemodynamics on valve shear stress. Shear stress data can be used for further experiments investigating effects of fluid shear stress on valve biology, for conditioning tissue engineered AV, and to validate numerical simulations.  相似文献   

9.
Laser Doppler velocimetry is a technique for continuous estimation of changing blood flow in the surface of a tissue and does not require invasion of the circulation. This technique is based upon the Doppler principle that a shift in the frequency of an electromagnetic wave emitted or reflected from a moving object is proportional to the velocity of the object. The capacity of Laser Doppler velocimetry to estimate changes in intestinal mucosal blood flow was tested in a canine free flow preparation. In anesthetized dogs in which a segment of ileum was isolated, simultaneous measurements of instantaneous changes in total blood flow (measured with the electromagnetic blood flow meter) and instantaneous changes in presumed mucosal blood flow (using laser Doppler velocimetry) were obtained. Determinations were made during conditions of rest, prostacyclin induced vasodilation and norepinephrine induced vasoconstriction. Changes in laser Doppler velocimeter readings were qualitatively similar to and temporally related to changes in total blood flow to the gut segment during administration of the vasoactive drugs. The magnitude and direction of changes with the two measurements were significantly correlated. Stabilizing the laser probe on the mucosal surface to ensure reproducible readings proved technically difficult. Pharmacologically induced changes in laser Doppler velocimeter estimated changes in flow were more readily correlated with changes in electromagnetic flow meter readings than were control values obtained with the two methods.  相似文献   

10.
This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ~10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ~60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ~15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.  相似文献   

11.
An experimental study was carried out on asymmetrical abdominal aortic aneurysm (AAA) to analyse the physiological flows involved. Velocity measurements were performed using particle image velocimetry. Resting and exercise flow rates were investigated in models with rigid and compliant walls to assess the parameters affecting the flow behaviour. The secondary flow patterns, and especially the evolution of the vortices within the AAA, were found to be highly dependent on both the flow waveforms and the wall behaviour. Vortices impacts on the distal walls of the AAA occur in the compliant model and can increase the local pressure on the AAA walls and thus increase the wall stresses; AAA wall stresses are one of the most important factors contributing to ruptured aneurysm.  相似文献   

12.
Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses.  相似文献   

13.
Flux blance analysis (FBA) has been shown to be a very effective tool to interpret and predict the metabolism of various microorganisms when the set of available measurements is not sufficient to determine the fluxes within the cell. In this methodology, an underdetermined stoichiometric model is solved using a linear programming (LP) approach. The predictions of FBA models can be improved if noisy measurements are checked for consistency, and these in turn are used to estimate model parameters. In this work, a formal methodology for data reconciliation and parameter estimation with underdetermined stoichiometric models is developed and assessed. The procedure is formulated as a nonlinear optimization problem, where the LP is transformed into a set of nonlinear constraints. However, some of these constraints violate standard regularity conditions, making the direct numerical solution very difficult. Hence, a barrier formulation is used to represent these constraints, and an iterative procedure is defined that allows solving the problem to the desired degree of convergence. This methodology is assessed using a stoichiometric yeast model. The procedure is used for data reconciliation where more reliable estimations of noisy measurements are computed. On the other hand, assuming unknown biomass composition, the procedure is applied for simultaneous data reconciliation and biomass composition estimation. In both cases it is verified that the f measurements required to get unbiased and reliable estimations is reduced if the LP approach is included as additional constraints in the optimization.  相似文献   

14.
Characterization of hepatic blood flow magnitude and distribution can lead to a better understanding of the pathophysiology of liver disease. However, the underlying patterns and dynamics of hepatic flow, such as the helical flow structure that often develops following the spleno-mesenteric confluence (SMC) of the hepatic portal vein, have not yet been comprehensively studied. In this study, we used magnetic resonance image (MRI)-based computational models to study the effects of the helical flow structure and SMC geometry on portal blood flow distribution. Additionally, we examined these flow dynamics with four-dimensional (4D) flow MRI in a group of 12 cirrhotic patients and healthy subjects. A validation model was also created to compare computational data to particle image velocimetry (PIV) data. We found significant correlations between flow structure development, vessel geometry, and blood flow distribution in both virtually modified models and in healthy and cirrhotic subjects. However, the direction of these correlations varied among vessel configuration types. Nonetheless, validation model results displayed good qualitative agreement with computational model data.  相似文献   

15.
In this work, we describe a methodology to fabricate transparent elastomeric vascular replicas using rapid prototyping techniques. First, the three-dimensional morphology of an elastase-induced aneurysm model in rabbit is acquired. The morphology is reconstructed from in vivo rotational angiography and it is compared with three-dimensional reconstructions obtained by computerized tomography and magnetic resonance imaging of an intraluminal arterial cast that was obtained from the same animal at sacrifice. Results show that resolution of the imaging modality strongly influences the level of detail, such as small side branches, in the final reconstruction. We developed an average morphology model for elastase-induced aneurysms in rabbits including the surrounding vasculature and describe a method for rapid prototyping of vascular models from the three-dimensional morphology. Our replicas can be manufactured in a short period of time and the final product is optically clear. In addition, the elasticity of the models can be controlled to represent arterial elasticity, which makes them ideal for optical investigations of detailed flow dynamics using measurement tools such as particle image velocimetry.  相似文献   

16.
In most bryophytes, the thickness of boundary layers (i.e., unstirred layers) that surrounds plant surfaces governs rates of water loss. Architectural features of canopies that influence boundary layer thickness affect the water balance of bryophytes. Using field samples (9.3 cm diameter cushions) from 12 populations (11 species) of mosses and liverworts, we evaluated the relationship between canopy structure and boundary layer properties. Canopy structure was characterized using a contact surface probe to measure canopy depth along perpendicular transects at spatial scales ranging from 0.8 to 30 mm on 186 points per sample. Semivariance in depth measurements at different spatial scales was used to estimate three architectural properties: surface roughness (L(r)), the scale of roughness elements (S(r)), and fine-scale surface texture, the latter characterized by the fractal dimension (D) of the canopy profile. Boundary layer properties were assessed by evaporation of ethanol from samples in a wind-tunnel at wind speeds from 0.6 to 4.2 m/s and applied to characterize mass transfer using principles of dynamic similarity (i.e., using dimensionless representations of conductance and flow). In addition, particle image velocimetry (PIV) was used to visualize and quantify flow over two species. All cushions exhibited the characteristics of turbulent as opposed to laminar boundary layers, and conductance increased with surface roughness. Bryophyte canopies with higher L(r) had greater conductances at all wind speeds. Particle image velocimetry analysis verified that roughness elements interacted with flow and caused turbulent eddies to enter canopies, enhancing evaporation. All three morphological features were significantly associated with evaporation. When L(r), S(r), and D were incorporated with a flow parameter into a conductance model using multiple linear regression, the model accounted for 91% of the variation in mass transfer.  相似文献   

17.
A confocal microparticle image velocimetry (micro-PIV) system was used to obtain detailed information on the velocity profiles for the flow of pure water (PW) and in vitro blood (haematocrit up to 17%) in a 100-microm-square microchannel. All the measurements were made in the middle plane of the microchannel at a constant flow rate and low Reynolds number (Re=0.025). The averaged ensemble velocity profiles were found to be markedly parabolic for all the working fluids studied. When comparing the instantaneous velocity profiles of the three fluids, our results indicated that the profile shape depended on the haematocrit. Our confocal micro-PIV measurements demonstrate that the root mean square (RMS) values increase with the haematocrit implying that it is important to consider the information provided by the instantaneous velocity fields, even at low Re. The present study also examines the potential effect of the RBCs on the accuracy of the instantaneous velocity measurements.  相似文献   

18.
Bioaffinity interactions have been, and continue to be, successfully adapted from nature for use in separation and detection applications. It has been previously reported that the magnetophoretic mobility of labeled cells show a saturation type phenomenon as a function of the concentration of the free antibody-magnetic nanoparticle conjugate which is consistent with other reports of antibody-fluorophore binding. Starting with the standard antibody-antigen relationship, a model was developed which takes into consideration multi-valence interactions, and various attributes of flow cytometry (FCM) and cell tracking velocimetry (CTV) measurements to determine both the apparent dissociation constant and the antibody-binding capacity (ABC) of a cell. This model was then evaluated on peripheral blood lymphocytes (PBLs) labeled with anti CD3 antibodies conjugated to FITC, PE, or DM (magnetic nanoparticles). Reasonable agreements between the model and the experiments were obtained. In addition, estimates of the limitation of the number of magnetic nanoparticles that can bind to a cell as a result of steric hinderance was consistent with measured values of magnetophoretic mobility. Finally, a scale-up model was proposed and tested which predicts the amount of antibody conjugates needed to achieve a given level of saturation as the total number of cells reaches 10(10), the number of cells needed for certain clinical applications, such as T-cell depletions for mismatched bone marrow transplants.  相似文献   

19.
We describe a supervised prediction method for diagnosis of acute myeloid leukemia (AML) from patient samples based on flow cytometry measurements. We use a data driven approach with machine learning methods to train a computational model that takes in flow cytometry measurements from a single patient and gives a confidence score of the patient being AML-positive. Our solution is based on an regularized logistic regression model that aggregates AML test statistics calculated from individual test tubes with different cell populations and fluorescent markers. The model construction is entirely data driven and no prior biological knowledge is used. The described solution scored a 100% classification accuracy in the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid Leukaemia Challenge against a golden standard consisting of 20 AML-positive and 160 healthy patients. Here we perform a more extensive validation of the prediction model performance and further improve and simplify our original method showing that statistically equal results can be obtained by using simple average marker intensities as features in the logistic regression model. In addition to the logistic regression based model, we also present other classification models and compare their performance quantitatively. The key benefit in our prediction method compared to other solutions with similar performance is that our model only uses a small fraction of the flow cytometry measurements making our solution highly economical.  相似文献   

20.
Pulsatile flow in abdominal aortic aneurysm (AAA) models has been examined in order to understand the hemodynamics that may contribute to growth of an AAA. The model studies were conducted by experiments (flow visualization and laser Doppler velocimetry) and by numerical simulation using physiologically realistic resting and exercise flow conditions. We characterize the flow for two AAA model shapes and sizes emulating early AAA development through moderate AAA growth (mean and peak Reynolds numbers of 362<Remean<1053 and 3308<Repeak<5696 with Womersley parameter 16.4<<21.2). The results of our investigation indicate that AAA flow can be divided into three flow regimes: (i) Attached flow over the entire cycle in small AAAs at resting conditions, (ii) vortex formation and translation in moderate size AAAs at resting conditions, and (iii) vortex formation, translation and turbulence in moderate size AAAs under exercise conditions. The second two regimes are classified in the medical literature as disturbed flow conditions that have been correlated with atherogenesis as well as thrombogenesis. Thus, AAA disturbed hemodynamics may be a contributing factor to AAA growth by accelerating the degeneration of the arterial wall. Our investigation also concluded that vortex development is considerably weaker in an asymmetric AAA. Furthermore, turbulence was not observed in the asymmetric model. Finally, our investigation suggests a new mode of transition to turbulence: vortex ring instability and bursting to turbulence. The transition process depends on a combination of the pulsatile flow conditions and the tube cross-sectional area change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号