首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While neuropathological features that define prion strains include spongiform degeneration and deposition patterns of PrPSc, the underlying mechanism for the strain-specific differences in PrPSc targeting is not known. To investigate prion strain targeting, we inoculated hamsters in the sciatic nerve with either the hyper (HY) or drowsy (DY) strain of the transmissible mink encephalopathy (TME) agent. Both TME strains were initially retrogradely transported in the central nervous system (CNS) exclusively by four descending motor tracts. The locations of HY and DY PrPSc deposition were identical throughout the majority of the incubation period. However, differences in PrPSc deposition between these strains were observed upon development of clinical disease. The differences observed were unlikely to be due to strain-specific neuronal tropism, since comparison of PrPSc deposition patterns by different routes of infection indicated that all brain areas were susceptible to prion infection by both TME strains. These findings suggest that prion transport and differential susceptibility to prion infection are not solely responsible for prion strain targeting. The data suggest that differences in PrPSc distribution between strains during clinical disease are due to differences in the length of time that PrPSc has to spread in the CNS before the host succumbs to disease.  相似文献   

2.
Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrPSc, a disease-associated isoform of the host-encoded cellular protein (PrPC). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrPSc. However, PrPSc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrPSc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrPC and PrPSc by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrPSc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl]1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl]1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrPSc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrPSc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrPSc conformational stabilities of protease-resistant and protease-sensitive PrPSc and that it is a valuable tool for strain typing in natural hosts, such as humans and sheep.  相似文献   

3.
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.  相似文献   

4.
During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res.  相似文献   

5.
Prion diseases are characterized by the conversion of the soluble protease-sensitive host-encoded prion protein (PrPC) into its aggregated, protease-resistant, and infectious isoform (PrPSc). One of the earliest events occurring in cells following exposure to an exogenous source of prions is the cellular uptake of PrPSc. It is unclear how the biochemical properties of PrPSc influence its uptake, although aggregate size is thought to be important. Here we show that for two different strains of mouse prions, one that infects cells (22L) and one that does not (87V), a fraction of PrPSc associated with distinct sedimentation properties is preferentially taken up by the cells. However, while the fraction of PrPSc and the kinetics of uptake were similar for both strains, PrPSc derived from the 87V strain was disaggregated more rapidly than that derived from 22L. The increased rate of PrPSc disaggregation did not correlate with either the conformational or aggregate stability of 87V PrPSc, both of which were greater than those of 22L PrPSc. Our data suggest that the kinetics of disaggregation of PrPSc following cellular uptake is independent of PrPSc stability but may be dependent upon some component of the PrPSc aggregate other than PrP. Rapid disaggregation of 87V PrPSc by the cell may contribute, at least in part, to the inability of 87V to infect cells in vitro.  相似文献   

6.
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.  相似文献   

7.
The mammalian prions replicate by converting cellular prion protein (PrPC) into pathogenic conformational isoform (PrPSc). Variations in prions, which cause different disease phenotypes, are referred to as strains. The mechanism of high-fidelity replication of prion strains in the absence of nucleic acid remains unsolved. We investigated the impact of different conformational characteristics of PrPSc on conversion of PrPC in vitro using PrPSc seeds from the most frequent human prion disease worldwide, the Creutzfeldt-Jakob disease (sCJD). The conversion potency of a broad spectrum of distinct sCJD prions was governed by the level, conformation, and stability of small oligomers of the protease-sensitive (s) PrPSc. The smallest most potent prions present in sCJD brains were composed only of∼20 monomers of PrPSc. The tight correlation between conversion potency of small oligomers of human sPrPSc observed in vitro and duration of the disease suggests that sPrPSc conformers are an important determinant of prion strain characteristics that control the progression rate of the disease.  相似文献   

8.
Prion diseases are classically characterized by the accumulation of pathological prion protein (PrPSc) with the protease resistant C-terminal fragment (PrPres) of 27–30 kDa. However, in both humans and animals, prion diseases with atypical biochemical features, characterized by PK-resistant PrP internal fragments (PrPres) cleaved at both the N and C termini, have been described. In this study we performed a detailed comparison of the biochemical features of PrPSc from atypical prion diseases including human Gerstmann-Sträussler-Scheinker disease (GSS) and variably protease-sensitive prionopathy (VPSPr) and in small ruminant Nor98 or atypical scrapie. The kinetics of PrPres production and its cleavage sites after PK digestion were analyzed, along with the PrPSc conformational stability, using a new method able to characterize both protease-resistant and protease-sensitive PrPSc components. All these PrPSc types shared common and distinctive biochemical features compared to PrPSc from classical prion diseases such as sporadic Creutzfeldt-Jakob disease and scrapie. Notwithstanding, distinct biochemical signatures based on PrPres cleavage sites and PrPSc conformational stability were identified in GSS A117V, GSS F198S, GSS P102L and VPSPr, which allowed their specific identification. Importantly, the biochemical properties of PrPSc from Nor98 and GSS P102L largely overlapped, but were distinct from the other human prions investigated. Finally, our study paves the way towards more refined comparative approaches to the characterization of prions at the animal–human interface.  相似文献   

9.
With the development of protein misfolding cyclic amplification (PMCA), the topic of faithful propagation of prion strain-specific structures has been constantly debated. Here we show that by subjecting brain material of a synthetic strain consisting of a mixture of self-replicating states to PMCAb, selective amplification of PrPSc could be achieved, and that PMCAb mimicked the evolutionary trend observed during serial transmission in animals. On the other hand, using modified PMCAb conditions that employ partially deglycosylated PrPC (dgPMCAb), an alternative transmissible state referred to as atypical protease-resistant form of the prion protein (atypical PrPres) was selectively amplified from a mixture. Surprisingly, when hamster-adapted strains (263K and Hyper) were subjected to dgPMCAb, their proteinase K digestion profile underwent a dramatic transformation, suggesting that a mixture of atypical PrPres and PrPSc might be present in brain-derived materials. However, detailed analysis revealed that the proteinase K-resistant profile of PrPSc changed in response to dgPMCAb. Despite these changes, the 263K strain-specific disease phenotype was preserved after passage through dgPMCAb. This study revealed that the change in PrPSc biochemical phenotype does not always represent an irreversible transformation of a strain, but rather demonstrated the existence of a wide range of variation for strain-specific physical features in response to a change in prion replication environment. The current work introduced a new PMCA technique for amplification of atypical PrPres and raised a number of questions about the need for a clever distinction between actual strain mutation and variation of strain-specific features in response to a change in the replication environment.  相似文献   

10.
Gerstmann-Sträussler-Scheinker (GSS) disease is a dominantly inherited prion disease associated with point mutations in the Prion Protein gene. The most frequent mutation associated with GSS involves a proline-to-leucine substitution at residue 102 of the prion protein, and is characterized by marked variability at clinical, pathological and molecular levels. Previous investigations of GSS P102L have shown that disease-associated pathological prion protein, or PrPSc, consists of two main conformers, which under exogenous proteolysis generates a core fragment of 21 kDa and an internal fragment of 8 kDa. Both conformers are detected in subjects with spongiform degeneration, whereas only the 8 kDa fragment is recovered in cases lacking spongiosis. Several studies have reported an exclusive derivation of protease-resistant PrPSc isoforms from the mutated allele; however, more recently, the propagation of protease-resistant wild-type PrPSc has been described. Here we analyze the molecular and pathological phenotype of six GSS P102L cases characterized by the presence of 21 and 8 kDa PrP fragments and two subjects with only the 8 kDa PrP fragment. Using sensitive protein separation techniques and Western blots with antibodies differentially recognizing wild-type and mutant PrP we observed a range of PrPSc allelic conformers, either resistant or sensitive to protease treatment in all investigated subjects. Additionally, tissue deposition of protease-sensitive wild-type PrPSc molecules was seen by conventional PrP immunohistochemistry and paraffin-embedded tissue blot. Our findings enlarge the spectrum of conformational allelic PrPSc quasispecies propagating in GSS P102L thus providing a molecular support to the spectrum of disease phenotypes, and, in addition, impact the diagnostic role of PrP immunohistochemistry in prion diseases.  相似文献   

11.
Reagents that can precipitate the disease-associated prion protein (PrPSc) are vital for the development of high sensitivity tests to detect low levels of this disease marker in biological material. Here, a range of minerals are shown to precipitate both ovine cellular prion protein (PrPC) and ovine scrapie PrPSc. The precipitation of prion protein with silicon dioxide is unaffected by PrPSc strain or host species and the method can be used to precipitate bovine BSE. This method can reliably concentrate protease-resistant ovine PrPSc (PrPres) derived from 1.69 μg of brain protein from a clinically infected animal diluted into either 50 ml of buffer or 15 ml of plasma. The introduction of a SiO2 precipitation step into the immunological detection of PrPres increased detection sensitivity by over 1,500-fold. Minerals such as SiO2 are readily available, low cost reagents with generic application to the concentration of diseases-associated prion proteins.  相似文献   

12.

Background

A key event in transmissible spongiform encephalopathies (TSEs) is the conversion of the soluble, protease-sensitive glycosylated prion protein (PrPC) to an abnormally structured, aggregated and partially protease-resistant isoform (PrPSc). Both PrP isoforms bear two potential glycosylation sites and thus in a typical western blot with an anti-PrP antibody three distinct bands appear, corresponding to the di-, mono- or unglycosylated forms of the protein. The relative intensity and electrophoretic mobility of the three bands are characteristic of each TSE strain and have been used to discriminate between them.

Methodology/Principal Findings

In the present study we used lectin-based western blotting to evaluate possible variations in composition within sugar chains carried by PrPSc purified from subjects affected with different TSEs. Our findings indicate that in addition to the already well-documented differences in electrophoretic mobility and amounts of the glycosylated PrPSc forms, TSE strains also vary in the abundance of specific N-linked sugars of the PrPSc protein.

Conclusions/Significance

These results imply that PrP glycosylation might fine-tune the conversion of PrPC to PrPSc and could play an accessory role in the appearance of some of the characteristic features of TSE strains. The differences in sugar composition could also be used as an additional tool for discrimination between the various TSEs.  相似文献   

13.
Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164), denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174) did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrPSc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600–750 days in Tg4053 mice, which exhibited sPrPSc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrPSc.  相似文献   

14.
Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders.  相似文献   

15.
Transmissible spongiform encephalopathies are neurodegenerative diseases caused by prions in mammals. An aberrantly folded protein (PrPSc) is the main component of these proteinaceous infectious particles. Prions exhibit strong resistance to protease digestion, which is typically exploited for biochemical discrimination from its native cellular form (PrPC). This classical feature has been partially challenged by the isolation of sizeable amounts of protease-sensitive PrPSc isoforms that self-propagate in vivo. Here, we report that the degree of PrPSc protease resistance is highly dependent on the concentration of salt in the solution. Similar changes were observed in PrPSc obtained from different strains and species. Strikingly, the effect of salt is reversible and is associated with changes on the size of PrPSc particles, but surprisingly, the more protease-sensitive species consists of a larger size. These findings shed light on the mechanistic aspects of prion proteolysis and should be considered when assessing samples of biomedical relevance.  相似文献   

16.
The absence of infectivity-associated, protease-resistant prion protein (PrPSc) in the brains of spontaneously sick transgenic (Tg) mice overexpressing PrP linked to Gerstmann–Sträussler Scheinker syndrome, and the failure of gene-targeted mice expressing such PrP to develop disease spontaneously, challenged the concept that mutant PrP expression led to spontaneous prion production. Here, we demonstrate that disease in overexpressor Tg mice is associated with accumulation of protease-sensitive aggregates of mutant PrP that can be immunoprecipitated by the PrPSc-specific monoclonal antibody designated 15B3. Whereas Tg mice expressing multiple transgenes exhibited accelerated disease when inoculated with disease-associated mutant PrP, Tg mice expressing mutant PrP at low levels failed to develop disease either spontaneously or following inoculation. These studies indicate that inoculated mutant PrP from diseased mice promotes the aggregation and accumulation of pre-existing pathological forms of mutant PrP produced as a result of transgene overexpression. Thus, while pathological mutant PrP possesses a subset of PrPSc characteristics, we now show that the attribute of prion transmission suggested by previous studies is more accurately characterized as disease acceleration.  相似文献   

17.
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrPSc accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrPSc in animals is controlled by the relationship between the rate of PrPSc formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrPSc formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrPSc and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrPSc formation and did not observe either a reduction in PrPSc abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.  相似文献   

18.
Prion strain interference can influence the emergence of a dominant strain from a mixture; however, the mechanisms underlying prion strain interference are poorly understood. In our model of strain interference, inoculation of the sciatic nerve with the drowsy (DY) strain of the transmissible mink encephalopathy (TME) agent prior to superinfection with the hyper (HY) strain of TME can completely block HY TME from causing disease. We show here that the deposition of PrPSc, in the absence of neuronal loss or spongiform change, in the central nervous system corresponds with the ability of DY TME to block HY TME infection. This suggests that DY TME agent-induced damage is not responsible for strain interference but rather prions compete for a cellular resource. We show that protein misfolding cyclic amplification (PMCA) of DY and HY TME maintains the strain-specific properties of PrPSc and replicates infectious agent and that DY TME can interfere, or completely block, the emergence of HY TME. DY PrPSc does not convert all of the available PrPC to PrPSc in PMCA, suggesting the mechanism of prion strain interference is due to the sequestering of PrPC and/or other cellular components required for prion conversion. The emergence of HY TME in PMCA was controlled by the initial ratio of the TME agents. A higher ratio of DY to HY TME agent is required for complete blockage of HY TME in PMCA compared to several previous in vivo studies, suggesting that HY TME persists in animals coinfected with the two strains. This was confirmed by PMCA detection of HY PrPSc in animals where DY TME had completely blocked HY TME from causing disease.Prions are infectious agents of animals, including humans, which are comprised of PrPSc, a misfolded isoform of the noninfectious host encoded protein PrPC (17, 24, 50, 63). Prion diseases of humans are unique neurodegenerative disorders in that they can have either a sporadic, familial, or infectious etiology. Prions cause disease in economically important domestic and wild animal species such as bovine spongiform encephalopathy in cattle and chronic wasting disease in wild and captive cervids (20, 62). Prion diseases can be zoonotic as illustrated by the transmission of bovine spongiform encephalopathy to humans that resulted in the emergence of variant Creutzfeldt-Jacob disease (14, 19, 22, 23, 46, 61, 68). Prion diseases are inevitably fatal and there are currently no effective treatments (21).Prion strains are defined by a characteristic set of features that breed true upon experimental passage (33, 34). Strain-specific differences have been identified in incubation period, clinical signs, agent distribution, overdominance, host range, neuropathology, and biochemical properties of PrPSc (5, 10, 11, 13, 28, 34, 42, 44). Strain-specific conformations of PrPSc are hypothesized to encode prion strain diversity; however, it is not understood how these differences result in the distinct strain properties (11, 19, 40, 47, 59, 66).Prion strain interference may be involved in the emergence of a dominant strain from a mixture as could occur during prion adaptation to a new host species or during prion evolution (4, 36, 43, 48, 56). In the natural prion diseases, there are examples where an individual host may be infected with more than one prion strain (15, 25, 55, 57, 58). Experimentally, coinfection or superinfection of prion strains can result in interference where a blocking, long incubation period strain extends the incubation period or completely blocks a superinfecting, short incubation period strain from causing disease (26, 27). Prion interference has been described in experimental studies of mice and hamsters infected with a wide variety of prion strains and routes of inoculation, suggesting it may be a common property of prion disease (3, 27, 52, 53, 60).It has been proposed that prion strains compete for a shared “replication site”; however, mechanistic details are not known, and it is unclear whether the blocking strain destroys or occupies the replication sites required for the superinfecting strain (28). The transport to and relative onset of replication of interfering strains in a common population of neurons is an important factor that can determine which strain will emerge (8). In the present study, we sought to determine whether the blocking strain disables transport and spread of the superinfecting strain or whether prion interference is due to competition for a cellular resource.  相似文献   

19.
Co-inoculation of prion strains into the same host can result in interference, where replication of one strain hinders the ability of another strain to cause disease. The drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME) extends the incubation period or completely blocks the hyper (HY) strain of TME following intracerebral, intraperitoneal or sciatic nerve routes of inoculation. However, it is not known if the interfering effect of the DY TME agent is exclusive to the HY TME agent by these experimental routes of infection. To address this issue, we show that the DY TME agent can block hamster-adapted chronic wasting disease (HaCWD) and the 263K scrapie agent from causing disease following sciatic nerve inoculation. Additionally, per os inoculation of DY TME agent slightly extends the incubation period of per os superinfected HY TME agent. These studies suggest that prion strain interference can occur by a natural route of infection and may be a more generalized phenomenon of prion strains.Key words: prion diseases, prion interference, prion strainsPrion diseases are fatal neurodegenerative diseases that are caused by an abnormal isoform of the prion protein, PrPSc.1 Prion strains are hypothesized to be encoded by strain-specific conformations of PrPSc resulting in strain-specific differences in clinical signs, incubation periods and neuropathology.27 However, a universally agreed upon definition of prion strains does not exist. Interspecies transmission and adaptation of prions to a new host species leads to the emergence of a dominant prion strain, which can be due to selection of strains from a mixture present in the inoculum, or produced upon interspecies transmission.8,9 Prion strains, when present in the same host, can interfere with each other.Prion interference was first described in mice where a long incubation period strain 22C extended the incubation period of a short incubation period strain 22A following intracerebral inoculation.10 Interference between other prion strains has been described in mice and hamsters using rodent-adapted strains of scrapie, TME, Creutzfeldt-Jacob disease and Gerstmannn-Sträussler-Scheinker syndrome following intracerebral, intraperitoneal, intravenous and sciatic nerve routes of inoculation.1015 We previously demonstrated the detection of PrPSc from the long incubation period DY TME agent correlated with its ability to extend the incubation period or completely block the superinfecting short incubation period HY TME agent from causing disease and results in a reduction of HY PrPSc levels following sciatic nerve inoculation.12 However, it is not known if a single long incubation period agent (e.g., DY TME) can interfere with more than one short incubation period agent or if interference can occur by a natural route of infection.To examine the question if one long incubation period agent can extend the incubation period of additional short incubation period agents, hamsters were first inoculated in the sciatic nerve with the DY TME agent 120 days prior to superinfection with the short-incubation period agents HY TME, 263K scrapie and HaCWD.1618 The HY TME and 263K scrapie agents have been biologically cloned and have distinct PrPSc properties.19,20 The HaCWD agent used in this study is seventh hamster passage that has not been biologically cloned and therefore will be referred to as a prion isolate. Sciatic nerve inoculations were performed as previously described.11,12 Briefly, hamsters were inoculated with 103.0 i.c. LD50 of the DY TME agent or equal volume (2 µl of a 1% w/v brain homogenate) of uninfected brain homogenate 120 days prior to superinfection of the same sciatic nerve with either 104.6 i.c. LD50 of the HY TME agent, 105.2 i.c. LD50 of the HaCWD agent or 104.6 i.c. LD50/g 263K scrapie agent (Bartz J, unpublished data).16,18,21 Animals were observed three times per week for the onset of clinical signs of HY TME, 263K and HaCWD based on the presence of ataxia and hyperexcitability, while the clinical diagnosis of DY TME was based on the appearance of progressive lethargy.1618 The incubation period was calculated as the number of days between the onset of clinical signs of the agent strain that caused disease and the inoculation of that strain. The Student''s t-test was used to compare incubation periods.12 We found that sciatic nerve inoculation of both the HaCWD agent and 263K scrapie agent caused disease with a similar incubation period to animals infected with the HY TME agent (12 In hamsters inoculated with the DY TME agent 120 days prior to superinfection with the HaCWD or 263K agents, the animals developed clinical signs of DY TME with an incubation period that was not different from the DY TME agent control group (12 The PrPSc migration properties were consistent with the clinical diagnosis and all co-infected animals had PrPSc that migrated similar to PrPSc from the DY TME agent infected control animal (Fig. 1, lanes 1–10). This data indicates that the DY TME agent can interfere with more than one isolate and that interference in the CNS may be a more generalized phenomenon of prion strains.Open in a separate windowFigure 1The strain-specific properties of PrPSc correspond to the clinical diagnosis of disease. Western blot analysis of 250 µg brain equivalents of proteinase K digested brain homogenate from prion-infected hamsters following intracerebral (i.c.), sciatic nerve (i.sc.) or per os inoculation with either the HY TME (HY), DY TME (DY), 263K scrapie (263K), hamster-adapted CWD (CWD) agents or mock-infected (UN). The unglycoyslated PrPSc glycoform of HY TME, 263K scrapie and hamster-adapted CWD migrates at 21 kDa. The unglycosylated PrPSc glycoform of DY PrPSc migrates at 19 kDa. Migration of 19 and 21 kDa PrPSc are indicated by the arrows on the left of the figure. n.a., not applicable.

Table 1

Clinical signs and incubation periods of hamsters inoculated in the sciatic nerve with either the HY TME, HaCWD or 263K scrapie agents, or co-infected with the DY TME agent 120 days prior to superinfection of hamsters with the HY TME, HaCWD or 263K agents
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.72 ± 3b
Mock120 daysHaCWDHaCWD21 kDa5/5n.a.73 ± 3
Mock120 days263K263K21 kDa5/5n.a.72 ± 3
DY TME120 daysMockDY TME19 kDa4/4224 ± 2n.a.
DY TME120 daysHY TMEDY TME19 kDa5/5222 ± 2c102 ± 2
DY TME120 daysHaCWDDY TME19 kDa5/5223 ± 3c103 ± 3
DY TME120 days263KDY TME19 kDa5/5222 ± 2c102 ± 2
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period similar compared to control animals inoculated with the DY TME agent alone (p > 0.05). n.a., not applicable.To examine the question if prion interference can occur following a natural route of infection, hamsters were first inoculated per os with the DY TME agent and then superinfected per os with the HY TME agent at various time points post DY TME agent infection. Hamsters were per os inoculated by drying the inoculum on a food pellet and feeding this pellet to an individual animal as described previously.22 For the per os interference experiment, 105.7 i.c. LD50 of the DY TME agent or an equal volume of uninfected brain homogenate (100 µl of a 10% w/v brain homogenate) was inoculated 60, 90 or 120 days prior to per os superinfection of hamsters with 107.3 i.c. LD50 of the HY TME agent. A 60 or 90 day interval between DY TME agent infection and HY TME agent superinfection resulted in all of the animals developing clinical signs of HY TME with incubation periods that are similar to control hamsters inoculated with the HY TME agent alone (Fig. 1, lanes 11–16). The eight-day extension in the incubation period of HY TME in the 120 day interval co-infected group is consistent with a 1 log reduction in titer.21 This is the first report of prion interference by the per os route of infection, a likely route of prion infection in natural prion disease and provides further evidence that prion strain interference could occur in natural prion disease.2325

Table 2

Clinical signs and incubation periods of hamsters per os inoculated with either the HY TME or DY TME agent, or per os co-infected with the DY TME agent 60, 90 or 120 days prior to superinfection of hamsters with the HY TME agent
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.140 ± 5b
DY TME60 daysHY TMEHY TME21 kDa5/5195 ± 6135 ± 6
DY TME90 daysHY TMEHY TME21 kDa5/5230 ± 5140 ± 5
DY TME120 daysHY TMEHY TME21 kDa5/5269 ± 3149 ± 3c
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period extended compared to control animals inoculated with the HY TME agent alone (p < 0.01); n.a., not applicable.The capacity of the DY TME agent to replicate modulates its ability to interfere with the HY TME agent. TME interference, following sciatic nerve inoculation, occurs in the lumbar spinal cord and DY PrPSc abundance in this structure correlates with the ability of the DY TME agent to interfere with the HY TME agent.12 Following extraneural routes of infection, DY TME agent replication and PrPSc deposition are not detected in spleen or lymph nodes, which is the major site of extraneural HY TME agent replication.11,21,26 The DY TME agent can interfere with the HY TME agent following intraperitoneal and per os infection, suggesting that the DY TME agent is replicating in other locations that are involved in HY TME agent neuroinvasion (11  相似文献   

20.
The abnormal prion protein (scrapie-associated prion protein, PrPSc) is considered to be included in the group of infectious agents of transmissible spongiform encephalopathies. Since PrPSc is highly resistant to normal sterilization procedures, the decontamination of PrPSc is a significant public health issue. In the present study, a hyperthermostable protease, Tk-subtilisin, was used to degrade PrPSc. Although PrPSc is known to be resistant toward proteolytic enzymes, Tk-subtilisin was able to degrade PrPSc under extreme conditions. The level of PrPSc in brain homogenates was found to decrease significantly in vitro following Tk-subtilisin treatment at 100 °C, whereas some protease-resistant fractions remain after proteinase K treatment. Rather small amounts of Tk-subtilisin (0.3 U) were required to degrade PrPSc at 100 °C and pH 8.0. In addition, Tk-subtilisin was observed to degrade PrPSc in the presence of sodium dodecyl sulfate or other industrial surfactants. Although several proteases degrading PrPSc have been reported, practical decontamination procedures using enzymes are not available. This report aims to provide basic information for the practical use of a proteolytic enzyme for PrPSc degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号