首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human/rodent CYP1A1 and CYP1A2 orthologs are well known to exhibit species-specific differences in substrate preferences and rates of metabolism. This lab previously characterized a BAC-transgenic mouse carrying the human CYP1A1_CYP1A2 locus; in this line, human dioxin-inducible CYP1A1 and basal vs dioxin-inducible CYP1A2 have been shown to be expressed normally (with regard to mRNAs, proteins and three enzyme activities) in every one of nine mouse tissues studied. The mouse Cyp1a1 and Cyp1a2 genes are oriented head-to-head and share a bidirectional promoter region of 13,954 bp. Using Cre recombinase and loxP sites inserted 3' of the stop codons of both genes, we show here a successful interchromosomal excision of 26,173 bp that ablated both genes on the same allele. The Cyp1a1/1a2(-) double-knockout allele was bred with the "humanized" line; the final product is the hCYP1A1_1A2_Cyp1a1/1a2(-/-) line on a theoretically >99.8% C57BL/6J genetic background-having both human genes replacing the mouse orthologs. This line will be valuable for human risk assessment studies involving any environmental toxicant or drug that is a substrate for CYP1A1 or CYP1A2.  相似文献   

2.
3.
Dale M  Nicklin MJ 《Genomics》1999,57(1):177-179
The family of interleukin-1 receptor-like genes currently has six known members. We have constructed a contig of 10 overlapping human PAC clones that covers 530 kb and includes five of the six family members. The termini of the contig were mapped to the interval between D2S373 and D2S176 (chromosome 2q12) by radiation hybrid mapping. The contig contains the genes (cen --> tel), in the order given, for the type II interleukin-1 (IL-1) receptor (IL1R2), the type I IL-1 receptor (IL1R1), the IL-1 receptor-related protein 2 (IL1RL2), T1/ST2/fit-1 (IL1RL1), and the IL-1 receptor-related protein 1, which has recently been shown to be a component of the IL-18 receptor (IL18R1). We show that all the genes are transcribed in the same direction, with IL1R2 being transcribed toward the cluster. The only known family member that is absent from the human contig is the IL-1 receptor accessory protein gene (IL1RAP), which maps to 3q28.  相似文献   

4.
Noncommunicable diseases such as cardiovascular disease (stroke and heart attack), cancer, chronic respiratory disease, and diabetes are a leading cause of death and disability worldwide and are worsened by inflammation. IL-1 is a driver of inflammation and implicated in many noncommunicable diseases. Acidosis is also a key feature of the inflammatory microenvironment; therefore it is vital to explore IL-1 signaling under acidic conditions. A HEK-IL-1 reporter assay and brain endothelial cell line were used to explore activity of mature IL-1α and IL-1β at pH 7.4 and pH 6.2, an acidic pH that can be reached under inflammatory or ischemic conditions, alongside cathepsin D-cleaved 20-kDa IL-1β produced under acidic conditions. We report that mature IL-1 signaling at IL-1 receptor type 1 (IL-1R1) is maintained at pH 6.2, but the activity of the decoy receptor, IL-1R2, is reduced. Additionally, cathepsin D-cleaved 20-kDa IL-1β was minimally active at IL-1R1 and was not further cleaved to highly active 17-kDa IL-1β. Therefore formation of the 20-kDa form of IL-1β may prevent the generation of mature bioactive IL-1β and thus may limit inflammation.  相似文献   

5.
Guanylate cyclase-activating protein 2 (GCAP2) is expressed in vertebrate photoreceptors cells where it regulates the activity of membrane bound guanylate cyclases in a Ca(2+)-dependent manner. The essential trigger step involves a Ca(2+)-induced conformational change in GCAP2. We investigated these Ca(2+)-dependent changes by probing the cysteine accessibility in wild type and mutant GCAP2 forms with the thiol-modifying reagent 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Cysteine residues in position 35 and 111 displayed a restricted accessibility in the presence of Ca(2+), whereas cysteine in position 131 reacted with DTNB in the presence and absence of Ca(2+). Our data indicate that the Ca(2+)-sensitivity of GCAP2 is significantly controlled by its third Ca(2+)-binding site, EF-hand 3.  相似文献   

6.
Three compounds, 1-benzylamino-1-deoxy-d-threo-pentulose (1), 1-dibenzylamino-1-deoxy-d-fructuronic acid (2), and d-glucuronic acid (3) were converted into 2-furaldehyde in acidified, tritiated water. In the latter system, the 2-furaldehyde derived from 1 contained 13% of the activity of the solvent at the aldehyde carbon and 9% at positions 3–5 of the furan ring; that from 2 contained 8% at the aldehyde carbon and 29% at positions 3–5; and that from 3 contained 18% at positions 3–5 In deuterium oxide, the 2-furaldehyde derived from 1 contained 14 atom % of deuterium at position 3, 5% at position 4, and 0% at position 5. That from 2 contained 50% at position 3, 44% at position 4, and 7% at position 5. That from 3 contained 35% at position 3, 15% at position 4, and 5% at position 5. The data for 1 are discussed relative to prior data on incorporation collected for d-xylose Incorporation data for both 2 and 3 are qualitatively consistent with a decarboxylation step involving a β,γ-unsaturated, carboxylic acid intermediate. A mechanism for the decarboxylation of hexuronic acids is presented.  相似文献   

7.
Hypoxia-inducible factor-1 (HIF-1) is a master regulator of oxygen homeostasis that controls the expression of genes encoding proteins that play key roles in angiogenesis, erythropoiesis, and glucose/energy metabolism. The stability of the HIF-1alpha subunit is regulated by ubiquitination and proteasomal degradation. In aerobic cells, O(2)-dependent prolyl hydroxylation of HIF-1alpha is required for binding of the von Hippel-Lindau tumor suppressor protein VHL, which then recruits the Elongin C ubiquitin-ligase complex. SSAT2 (spermidine/spermine N-acetyltransferase-2) binds to HIF-1alpha and promotes its ubiquitination/degradation by stabilizing the interaction of VHL and Elongin C. Treatment of cells with heat shock protein HSP90 inhibitors induces the degradation of HIF-1alpha even under hypoxic conditions. HSP90 competes with RACK1 for binding to HIF-1alpha, and HSP90 inhibition leads to increased binding of RACK1, which recruits the Elongin C ubiquitin-ligase complex to HIF-1alpha in an O(2)-independent manner. In this work, we demonstrate that SSAT1, which shares 46% amino acid identity with SSAT2, also binds to HIF-1alpha and promotes its ubiquitination/degradation. However, in contrast to SSAT2, SSAT1 acts by stabilizing the interaction of HIF-1alpha with RACK1. Thus, the paralogs SSAT1 and SSAT2 play complementary roles in promoting O(2)-independent and O(2)-dependent degradation of HIF-1alpha.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Sphingosine-1-phosphate (S1P) elicits diverse cellular responses through a family of G-protein-coupled receptors. We have shown previously that genetic disruption of the S1P(1) receptor, the most widely expressed of the family, results in embryonic lethality because of its key role within endothelial cells in regulating the coverage of blood vessels by vascular smooth muscle cells. To understand the physiologic functions of the two other widely expressed S1P receptors, we generated S1P(2) and S1P(3) null mice. Neither the S1P(2) null mice nor the S1P(3) null mice exhibited significant embryonic lethality or obvious phenotypic abnormalities. To unmask possible overlapping or collaborative functions between the S1P(1), S1P(2), and S1P(3) receptors, we examined embryos with multiple S1P receptor mutations. We found that S1P(1) S1P(2) double null and S1P(1) S1P(2) S1P(3) triple null embryos displayed a substantially more severe vascular phenotype than did embryos with only S1P(1) deleted. We also found partial embryonic lethality and vascular abnormalities in S1P(2) S1P(3) double null embryos. Our results indicate that the S1P(1), S1P(2) and S1P(3) receptors have redundant or cooperative functions for the development of a stable and mature vascular system during embryonic development.  相似文献   

15.
16.
Herein, we describe generation of the hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrd mouse line, which carries human functional CYP1A1 and CYP1A2 genes in the absence of mouse Cyp1a1 and Cyp1a2 genes, in a (>99.8%) background of the C57BL/6J genome and harboring the poor-affinity aryl hydrocarbon receptor (AHR) from the DBA/2J mouse. We have characterized this line by comparing it to our previously created hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrb1 line—which carries the same but has the high-affinity AHR of the C57BL/6J mouse. By quantifying CYP1A1 and CYP1A2 mRNA in liver, lung and kidney of dioxin-treated mice, we show that dose-response curves in hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrd mice are shifted to the right of those in hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrb1 mice—similar to, but not as robust as, dose-response curves in DBA/2J versus C57BL/6J mice. This new mouse line is perhaps more relevant than the former to human risk assessment vis-à-vis human CYP1A1 and CYP1A2 substrates, because poor-affinity rather than high-affinity AHR occurs in the vast majority of the human population.  相似文献   

17.
18.
The formation of beta-D-glucopyranosides (glucuronides) by the UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates the elimination of small hydrophobic molecules such as drugs, dietary constituents, steroids, and bile acids. We elucidate here that an anti-oxidative response leads to induction of UGT1A1 through the Nrf2-Keap1 pathway. When human HepG2 cells were treated with the prooxidants tert-butylhydroquinone and beta-naphthoflavone, cellular UGT1A1 glucuronidation activities were increased. The induction of UGT1A1 proceeded following the overexpression of Nrf2 and was blocked following overexpression of Keap1, demonstrating that Keap1 suppresses Nrf2 activation of the UGT1A1 gene. Loss of function analysis for Nrf2 conducted by small interfering RNA revealed that induction of UGT1A1 was not seen in Nrf2 knock-out cells. To examine the contribution of oxidants toward the regulation of human UGT1A1 in vivo, transgenic mice bearing the human UGT1 locus (Tg-UGT1) were treated with tert-butylhydroquinone. Human UGT1A1 was markedly increased in small and large intestines as well as in liver. Gene mapping experiments including transfections of UGT1A1 reporter gene constructs into HepG2 cells coupled with functional analysis of Nrf2 expression and binding to anti-oxidant-response elements (ARE) resulted in identification of an ARE in the phenobarbital-response enhancer module region of the UGT1A1 gene. The ARE flanks the recently identified Ah receptor xenobiotic-responsive element. The results suggest that Nrf2-Keap1-dependent UGT1A1 induction by prooxidants might represent a key adaptive response to cellular oxidative stress that defends against a variety of environmental insults, including electrophile attacks and chemical carcinogenesis.  相似文献   

19.
The collagen-binding integrins α1β1 and α2β1 have profoundly different functions, yet they are often co-expressed in epithelial cells. When both integrins are expressed in the same cell, it has been suggested that α1β1 negatively regulates integrin α2β1-dependent functions. In this study we utilized murine ureteric bud (UB) epithelial cells, which express no functionally detectable levels of endogenous integrins α1β1 and α2β1, to determine the mechanism whereby this regulation occurs. We demonstrate that UB cells expressing integrin α2β1, but not α1β1 adhere, migrate and proliferate on collagen I as well as form cellular cords in 3D collagen I gels. Substitution of the transmembrane domain of the integrin α2 subunit with that of α1 results in decreased cell adhesion, migration and cord formation. In contrast, substitution of the integrin α2 cytoplasmic tail with that of α1, decreases cell migration and cord formation, but increases proliferation. When integrin α1 and α2 subunits are co-expressed in UB cells, the α1 subunit negatively regulates integrin α2β1-dependent cord formation, adhesion and migration and this inhibition requires expression of both α1 and α2 tails. Thus, we provide evidence that the transmembrane and cytoplasmic domains of the α2 integrin subunit, as well as the α1 integrin subunit, regulate integrin α2β1 cell function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号