首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape‐scale habitat availability and distribution, (2) water body‐scale habitat associations, and (3) resource management‐identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species’ range. Within these suitable areas, native and non‐native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper‐ and lower‐elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non‐native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator‐free refugia, and a commensalistic interaction with an ecosystem engineer. Beaver‐induced changes to habitat quality, stability, and connectivity may increase spotted frog population resistance and resilience to seasonal drought, grazing, non‐native predators, and climate change, factors which threaten local or regional persistence.  相似文献   

2.
  1. Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver-induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the inter-mountain west, an area with high potential for beaver-assisted restoration.
  2. The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in north-eastern Utah, U.S.A. We assessed macroinvertebrate species richness, biomass, density, functional feeding group composition, mobility group composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver-occupied streams.
  3. Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general, beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches.
  4. Regarding functional feeding groups, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For mobility groups, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, although this is probably due to the abundance of Baetis within lotic reaches. More beaver pond taxa were classified as lentic-dwelling insects, while more lotic reach taxa were categorised as preferring lotic habitats.
  5. The creation of ponds by beavers fundamentally altered the macroinvertebrate community in north-eastern Utah streams. Such changes to stream macroinvertebrate communities suggest that recolonisation of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonisation on stream communities.
  相似文献   

3.
Differences among lake morphologies often explain variation in characteristics of lentic ecosystems. Although beaver ponds also vary in morphology, previous studies have not examined the effects of such variation on downstream ecosystems. This study evaluated downstream effects of multiple beaver ponds in the Colorado Rocky Mountains during one low and one high-flow year. Beaver pond morphology was described as the natural log transformed ratio of beaver dam height (which determines hydraulic head) to pond surface area and related to pond spillover phytoplankton and characteristics of the ecosystem downstream (nutrient concentrations, limiting nutrients, periphyton, benthic organic matter (BOM), and benthic invertebrate consumers). Nitrate concentration increased systematically downstream of beaver ponds, but only in the low flow year when groundwater influences predominated. Effects of beaver ponds on soluble reactive phosphorus concentration depended on pond morphology, increasing downstream of small ponds with high dams, but only during the low-flow year. In situ experiments showed that neither beaver activity nor pond morphology predicted periphyton-limiting nutrients downstream. Both periphyton biomass and BOM decreased downstream of small ponds with high dams but pond morphology did not predict abundance of invertebrate grazers or detritus-feeding consumers. While suspension feeding invertebrates increased downstream from small ponds with high dams, variation in chlorophyll a from water spilling over beaver dams did not follow a similar pattern. We conclude that the effects of beaver ponds on downstream nutrients, resources and consumers are rarely systematic, but instead depend on variation in pond morphology and on annual hydrologic variation.  相似文献   

4.
Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a ‘randomly mating population’ (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.  相似文献   

5.
1. The North American beaver has been studied as a model ecosystem engineer for many decades. Previous studies have documented physical, chemical and biological impacts attributed to beaver engineering in both aquatic and terrestrial environments. This study focused on the effects of ecosystem engineering by beavers on life histories of a common mayfly and on the potential consequences for mayfly populations. 2. We studied 18 montane beaver ponds of varying size and shape in western Colorado near the Rocky Mountain Biological Laboratory. Our goal was to test whether variation in beaver pond morphology (pond size and shape) explains downstream changes in stream temperature, mayfly size and timing of emergence. 3. Downstream water temperatures varied predictably with pond morphology, being colder downstream of high‐head dams and warmer downstream of low‐head dams. Pond morphology was also a significant predictor of variation in the size of mature female Baetis bicaudatus (the most abundant mayfly), with larger females emerging downstream of high‐head dams and smaller females downstream of low‐head dams. The size of male B. bicaudatus was not significantly related to pond morphology or stream temperature. There was no relationship between pond morphology and variation in the timing of emergence of Baetis (males or females) between upstream and downstream reaches. 4. Our results have implications for the effects of beaver ponds on Baetis individual fitness because large Baetis females are more fecund. Therefore, predictable female size variation associated with beaver pond morphology makes it possible to model the effects of beaver activity on local contributions of Baetis to the regional pool of reproductive adults at the catchment scale. Additionally, predictable changes in the size of emerging mayflies may have important consequences for the magnitude of aquatic to terrestrial resource subsidies in beaver‐modified systems.  相似文献   

6.
The Upper Truckee River and Trout Creek, two major tributaries inflowing to Lake Tahoe, join to form what was historically the largest wetland in the Sierra Nevada mountain range that separates California and Nevada (USA). In the 1950s the delta floodplain of the Upper Truckee River was greatly reduced in area (38%) by urban development and the diversion of the river into a single excavated channel. Conversely, Trout Creek still flows through a wide marsh system with significant overbank flooding before entering Lake Tahoe. This study hypothesized that river channel reaches that are not incised within the delta floodplain retain more sediment and nutrients as a result of greater floodplain connectivity, compared to more incised and excavated reaches. Suspended sediment (SS) and total phosphorus (TP) load data from the delta formed by the Upper Truckee River and Trout Creek were collected using flow stage sensors, turbidometers and depth-integrated samples. During the spring snowmelt flow events monitored in 2003, SS load was reduced by 13–41% for the Upper Truckee River and by 68–90% for Trout Creek. Similar reductions in TP load were observed: 13–32% for the Upper Truckee River and 61–84% for Trout Creek. Monitoring of Trout Creek indicated a reduction in load per unit volume of 20–34% in a moderately incised reach versus a reduction of 51–77% in a non-incised marsh reach containing lagoons, braided channels and backwater areas created by a beaver dam. Smaller particle sizes, <10 μm, were retained in the lower marsh reach with similar efficiencies as larger particle sizes. If retention rates from the Trout Creek portion of the marsh are applied to the Upper Truckee River, sediment loading to Lake Tahoe for 2003 would have been reduced by 917 tons of SS.  相似文献   

7.
Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.  相似文献   

8.
Isaac J. Schlosser 《Oecologia》1998,113(2):260-268
I examine how dispersal of juvenile creek chubs (Semotilusatromaculatus) from beaver ponds into adjacent stream environments interacts with temporal abiotic variability to influence fish foraging, growth, and long-term persistence in the lotic ecosystem. Minnow trapping in upstream and downstream beaver ponds, along with weir traps used to monitor directional movement, indicated that most chubs colonized the stream from the downstream beaver pond. Large annual fluctuations in density of age 0 creek chubs occurred in the stream over a 10-year sampling period. Multiple regression analysis indicated that stream temperature, precipitation, and the density of reproductive creek chubs were not correlated with summer density of age 0 chubs in the stream. The factor most strongly associated with increased density of age 0 creek chubs was creation of the downstream beaver pond during the 6th–7th years of the study, suggesting dispersal from the pond was the primary factor determining age 0 fish density in the stream. Most individuals in the strong year classes neither persisted in the stream through their first winter nor resulted in an increased abundance of older age classes in later years. Comparison of age 0 fish density in summer to the proportion of fish surviving to age 1 in spring suggested that overwinter mortality was density dependent. Furthermore, a comparison of the size structure for age 0 individuals in summer to age 1 individuals the following spring indicated that winter mortality was size dependent. Experiments in an artificial stream adjacent to the natural channel revealed that fish growth was strongly density dependent, decreasing as fish density increased across both spring and summer, and elevated and low discharge. The decline in invertebrate prey captured by the fish and the subsequent decline in fish growth appeared to be particularly pronounced under low discharge in summer. Changes in juvenile creek chub density had no significant effect on benthic insect or crustacean abundance, suggesting that exploitative competition for limited invertebrate drift resources was a more important cause of density- dependent growth than depressed local benthic invertebrate abundance. These results suggest that lotic regions adjacent to beaver ponds act as potential reproductive “sinks” for dispersing juveniles confronting seasonal and flow-mediated restrictions on resource acquisition and growth, and the occurrence of seasonal bottlenecks to their survival, especially harsh winter conditions. Received: 9 September 1996 / Accepted: 8 August 1997  相似文献   

9.
Beaver impoundments modify the structure of river reaches and lead to changes in ecosystem function and biogeochemical processes. Here, we assessed the changes in dissolved organic matter (DOM) quality and the biodegradation patterns in a set of beaver systems across Sweden. As the effect of beaver impoundments might be transient and local, we compared DOM quality and biodegradability of both pond and upstream sections of differentially aged beaver systems. Newly established dams shifted the sources and DOM biodegradability patterns. In particular, humic-like DOM, most likely leached from surrounding soils, characterized upstream sections of new beaver impoundments. In contrast, autochthonous and processed compounds, with both higher biodegradation rates and a broader spectrum of reactivities, differentiated DOM in ponds. DOM in recently established ponds seemed to be more humic and less processed compared to older ponds, but system idiosyncrasies determined by catchment particularities influenced this ageing effect.  相似文献   

10.
Beavers (Castor canadensis) can cause dramatic changes in vegetative composition and diversity. Although alterations by beaver have been studied extensively, little attention has been paid to the effects beaver impoundments have on rare plants. Effective conservation of riparian and wetland rare plant species must consider the responses of vegetation to changes in hydrology that can occur when beaver populations are present. The goal of this research was to establish the occurrence of locally rare plant species, examine community composition, and analyze vegetative community structure of vegetation associated with beaver ponds in Canaan Valley, West Virginia, USA. Species richness and diversity were similar between plots located inside beaver ponds and adjacent to beaver ponds (P > 0.05). Although no significant difference in rare plant species was detected among pond ages, the oldest ponds (>56 years) had twice as many rare species as the youngest ponds (≤6 years). The youngest ponds had higher overall mean species richness (S) than ponds 7–56 years old (P < 0.05), but S returned to similar levels in the oldest ponds. Of the 15 rare species observed, most were classified as obligate (9) or facultative wetland (4) species. The youngest ponds contained the fewest number of rare species. Multiple response permutation procedure (MRPP) analyses of community structure detected no relation between community composition and either pond age or size. However, both MRPP and non-metric multi-dimensional scaling showed proximity to pond was important in herbaceous community structure. Wetlands in beaver ponds also were shown to be distinct from adjacent wetland areas. Conservation of existing beaver populations is necessary so that the entire spectrum of pond ages is available for the maintenance of rare plant species and communities.  相似文献   

11.
1. The growth of riparian trees in semi‐arid regions is influenced by stream flow regime, but the relative importance of base flow and seasonal floods on growth has not been explored. I examined abiotic influences on the growth of Platanus wrightii in four stream reaches in Arizona. All reaches had a bimodal pattern of discharge, but only two had continuous flow throughout the growing season.
2. In two reaches of Sycamore Creek without perennial flow, a large percentage of the annual variation in radial growth rate of P. wrightii was explained by annual and growing season flow rate. Growth was related to these same variables in a perennial reach of Sycamore Creek, but trees maintained higher growth during drought years than they did in the temporary reaches. At Oak Creek, a larger perennial stream, P. wrightii growth showed a bell‐shaped relationship with flow. These data suggest that growth rate is frequently limited by water availability at Sycamore Creek, but not at Oak Creek.
3. At both rivers, much of the annual surface flow occurs as winter floods. Oak Creek, however, maintains a high summer base flow even during years with no floods. Platanus wrightii growth was significantly related to winter flood frequency only at Sycamore Creek. The positive relationship of growth with stream flow and winter flood frequency at Sycamore Creek presumably occurs because the P. wrightii trees are dependent on the winter flows to recharge the shallow alluvial aquifer and to raise the level of ground water within the root zone.
4. Frequent summer floods increased the growth of trees in perennial and non‐perennial reaches alike. At perennial Oak Creek, summer flood frequency was the only variable linearly related to growth of P. wrightii. Summer flood frequency was a significant, but secondary, component of multiple‐regression growth models for trees in the perennial and non‐perennial reaches of Sycamore Creek. Summer floods may stimulate growth, in part, by replenishing limiting nutrients.
5. High temperature was negatively associated with the growth of P. wrightii at Sycamore Creek. The combination of drought and high temperature resulted in very low growth rate.
6. These results have implications for the management of flood and base flow regimes on regulated, diverted and pumped rivers.  相似文献   

12.
1. Movements between a stream reach and two adjacent lentic macrohabitats, a beaver pond and a lake, were followed for the Appalachian crayfish and two fish species, brook charr and brown bullhead, over an 85‐d period from early June to late August, and were analysed in relation to water level, maximum water temperature, photoperiod length, lunar luminosity, and age, by use of time‐series regressions. 2. Brook charr showed strong net immigration to the stream reach for underyearling (age class 0+) fish but net emigration for 1+ fish. Both immigration and emigration were positively related to water level and temperature; migratory responses to temperature were age‐specific. 3. Brown bullhead used the stream primarily as a corridor for downstream migration from the beaver pond to the lake. As with brook charr, water level and temperature had a positive effect on movement and responses were stronger in younger individuals. 4. Crayfish emigrated from the stream during the summer. Movements were positively related to increases in water level and temperature, with responses of 1+ crayfish much stronger than those of older individuals. 5. The results indicate that the stream tributary played different roles for brook charr (nursery), brown bullhead (dispersal corridor) and Appalachian crayfish (early summer refuge), and suggest that variation in water level or temperature resulting from climatic change or local anthropogenic activities might modify connectivity between macrohabitats, particularly for younger individuals.  相似文献   

13.
Edwardsiella tarda in freshwater catfish and their environment.   总被引:3,自引:1,他引:2       下载免费PDF全文
Edwardsiella tarda was isolated from 47, 88, and 79% of skin, visceral, and dressed-fish samples, respectively. This species was also isolated from 30% of imported dressed fish, 75% of catfish pond water samples, 64% of catfish pond mud samples, and 100% of frogs, turtles, and crayfish from catfish ponds. The incidence of Edwardsiella increased during the summer months, as water temperatures increased. Of several isolation media evaluated, the most effective was selective enrichment in double-strength Salmonella-Shigella broth and subsequent plating on single-strength Samonella-Shigella agar. The significance of the incidence of Edwardsiella in catfish, catfish disease, and public health could not be substantiated.  相似文献   

14.
Edwardsiella tarda was isolated from 47, 88, and 79% of skin, visceral, and dressed-fish samples, respectively. This species was also isolated from 30% of imported dressed fish, 75% of catfish pond water samples, 64% of catfish pond mud samples, and 100% of frogs, turtles, and crayfish from catfish ponds. The incidence of Edwardsiella increased during the summer months, as water temperatures increased. Of several isolation media evaluated, the most effective was selective enrichment in double-strength Salmonella-Shigella broth and subsequent plating on single-strength Samonella-Shigella agar. The significance of the incidence of Edwardsiella in catfish, catfish disease, and public health could not be substantiated.  相似文献   

15.
The North American beaver (Castor canadensis) builds dams that pond water on streams, which provide crucial ecological services to aquatic and riparian ecosystems and enhance biodiversity. Consequently, there is increasing interest in restoring beavers to locations where they historically occurred, particularly in the arid western United States. However, despite often intensive efforts to reintroduce beavers into areas where they were severely reduced in numbers or eliminated due to overharvesting in the eighteenth and nineteenth centuries, beavers remain sparse or missing from many stream reaches. Reasons for this failure have not been well studied. Our goal was to evaluate certain biotic factors that may limit the occurrence of dam‐building beavers in northern New Mexico, including competitors and availability of summer and winter forage. We compared these factors at primary active dams and at control sites located in stream reaches that were physically suitable for dam‐building beavers but where none occurred. Beaver dams mostly occurred at sites that were not grazed or where there was some alternative grazing management, but were mostly absent at sites within Forest Service cattle allotments. Results indicated that cattle grazing influenced the relation between vegetation variables and beaver presence. The availability of willows (Salix spp.) was the most important plant variable for the presence of beaver dams. We conclude that grazing by cattle as currently practiced on Forest Service allotments disrupts the beaver‐willow mutualism, rendering stream reaches unsuitable for dam‐building beavers. We recommend that beaver restoration will require changes to current livestock management practices.  相似文献   

16.
We compared the population dynamics of a riparian ranid frog, Rana swinhoana, before (1996–1999) and after (1999–2001) a strong earthquake. This earthquake caused little disturbance to the vegetation and landscape of the study site but the stream and ponds dried up within a week. Nearly all frogs marked (1002 of 1004) before the earthquake had disappeared after the earthquake. Smaller, unmarked frogs began to appear in stream habitats about 9 mo after the earthquake, and the frog population was much smaller than it was before the earthquake. Population dynamics and temporal and spatial distribution of frogs before and after the earthquake correlated closely with the hydrology of the stream and ponds. The movement patterns of frogs before and after the earthquake were similar, suggesting frog behavior did not change in response to drastic changes in hydrology, and frogs continued to exhibit strong site-fidelity. Following the earthquake, stream water volume was much lower, especially in the summer, which allowed the normally winter-breeding frogs to breed year-round. Results demonstrate that a population of R. swinhoana can disappear suddenly as the result of a natural disturbance. We propose that anuran species that exhibit strong site-fidelity are particularly susceptible to extirpation of local populations because frogs may lack the behavioral plasticity to respond to sudden water depletion.  相似文献   

17.
温彬  高勤峰  董双林  宁鲁光 《生态学报》2016,36(14):4327-4336
于2012年7月至2013年4月调查了荣成靖海湾3个不同水深的刺参(Apostichopus japonicus)养殖池塘内大型底栖动物的构成,以了解不同水深对刺参养殖池塘环境条件的影响以及由此引起的大型底栖生物群落结构的改变。结果表明:3个不同水深梯度池塘(1#浅水位、2#正常水位和3#高水位)底部光照强度、叶绿素a(Chla)和总有机物(TOM)含量存在显著差异,各池塘水温差异不显著。光强、Chla和TOM含量在夏季、冬季和春季均表现为1#池塘显著高于3#池塘;秋季各池塘间光强和TOM含量差异不显著,Chla含量则表现为3#池塘显著高于1#池塘。各季节3个池塘间大型底栖动物在种类组成、丰度、生物量和多样性指数上均存在显著性差异。大型底栖动物丰度和生物量夏季均表现为1#池塘显著高于3#池塘,秋季和冬季则相反;春季1#池塘丰度显著高于3#池塘,生物量则差异不显著。这些差异主要与其各自优势种及其优势度指数大小有关。大型底栖动物多样性指数夏季和秋季均表现为1#池塘高于3#池塘,春季则相反,冬季各池塘间多样性指数差异不显著。单因子相似性分析(ANOSIM)表明,各季节3个池塘间大型底栖动物群落结构均存在显著差异,表明水深梯度对刺参养殖池塘大型底栖动物群落结构造成显著性影响。相似性百分比分析(SIMPER)显示,各季节对3个池塘间大型底栖动物群落差异起主要作用的物种为各个池塘的优势种。典范对应分析(CCA)表明,水深、Chla和TOM含量为影响大型底栖动物群落的主要环境因子。  相似文献   

18.
Our aim was to determine how beavers affect habitats and food resources for juvenile salmon in the Kwethluk River in western Alaska.
    相似文献   

19.
20.
In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in‐situ tree‐ring records, eddy‐covariance CO2 and water flux measurements, and meta‐analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep?rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco‐hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号