首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3′ splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria.  相似文献   

2.
In addition to splicing, group I intron RNA is capable of an alternative two-step processing pathway that results in the formation of full-length intron circular RNA. The circularization pathway is initiated by hydrolytic cleavage at the 3′ splice site and followed by a transesterification reaction in which the intron terminal guanosine attacks the 5′ splice site presented in a structure analogous to that of the first step of splicing. The products of the reactions are full-length circular intron and unligated exons. For this reason, the circularization reaction is to the benefit of the intron at the expense of the host. The circularization pathway has distinct structural requirements that differ from those of splicing and appears to be specifically suppressed in vivo. The ability to form full-length circles is found in all types of nuclear group I introns, including those from the Tetrahymena ribosomal DNA. The biological function of the full-length circles is not known, but the fact that the circles contain the entire genetic information of the intron suggests a role in intron mobility.  相似文献   

3.
Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.  相似文献   

4.
Group I introns are pre-mRNA introns that do not require the spliceosome for their removal. Instead, they fold into complex three-dimensional structures and catalyze two transesterification reactions, thereby excising themselves and joining the flanking exons. These catalytic RNAs (ribozymes) have been modified previously to work in trans, whereby the ribozymes can recognize a splice site on a substrate RNA and replace the 5′- or 3′-portion of the substrate. Here we describe a new variant of the group I intron ribozyme from Tetrahymena that recognizes two splice sites on a substrate RNA, removes the intron sequences between the splice sites, and joins the flanking exons, analogous to the action of the spliceosome. This ‘group I spliceozyme’ functions in vitro and in vivo, and it is able to mediate a growth phenotype in E. coli cells. The intron sequences of the target pre-mRNAs are constrained near the splice sites but can carry a wide range of sequences in their interior. Because the splice site recognition sequences can be adjusted to different splice sites, the spliceozyme may have the potential for wide applications as tool in research and therapy.  相似文献   

5.
Plant mitochondrial group II introns do not all possess hallmark ribozymic features such as the bulged adenosine involved in lariat formation. To gain insight into their splicing pathways, we have examined the physical form of excised introns in germinating wheat embryos. Using RT–PCR and cRT–PCR, we observed conventional lariats consistent with a two-step transesterification pathway for introns such as nad2 intron 4, but this was not the case for the cox2 intron or nad1 intron 2. For cox2, we detected full-length linear introns, which possess non-encoded 3′terminaladenosines, as well as heterogeneous circular introns, which lack 3′ nucleotide stretches. These observations are consistent with hydrolytic splicing followed by polyadenylation as well as an in vivo circularization pathway, respectively. The presence of both linear and circular species in vivo is supported by RNase H analysis. Furthermore, the nad1 intron 2, which lacks a bulged nucleotide at the branchpoint position, comprised a mixed population of precisely full-length molecules and circular ones which also include a short, discrete block of non-encoded nucleotides. The presence of these various linear and circular forms of excised intron molecules in plant mitochondria points to multiple novel group II splicing mechanisms in vivo.  相似文献   

6.
The human thrombopoietin (THPO) gene displays a series of alternative splicing events that provide valuable models for studying splicing mechanisms. The THPO region spanning exon 1–4 presents both alternative splicing of exon 2 and partial intron 2 (IVS2) retention following the activation of a cryptic 3′ splice site 85 nt upstream of the authentic acceptor site. IVS2 is particularly rich in stretches of 3–5 guanosines (namely, G1–G10) and we have characterized the role of these elements in the processing of this intron. In vivo studies show that runs G7–G10 work in a combinatorial way to control the selection of the proper 3′ splice site. In particular, the G7 element behaves as the splicing hub of intron 2 and its interaction with hnRNP H1 is critical for the splicing process. Removal of hnRNP H1 by RNA interference promoted the usage of the cryptic 3′ splice site so providing functional evidence that this factor is involved in the selection of the authentic 3′ splice site of THPO IVS2.  相似文献   

7.
The B.c.I4 group II intron from Bacillus cereus ATCC 10987 harbors an unusual 3′ extension. Here, we report the discovery of four additional group II introns with a similar 3′ extension in Bacillus thuringiensis kurstaki 4D1 that splice at analogous positions 53/56 nt downstream of domain VI in vivo. Phylogenetic analyses revealed that the introns are only 47–61% identical to each other. Strikingly, they do not form a single evolutionary lineage even though they belong to the same Bacterial B class. The extension of these introns is predicted to form a conserved two-stem–loop structure. Mutational analysis in vitro showed that the smaller stem S1 is not critical for self-splicing, whereas the larger stem S2 is important for efficient exon ligation and lariat release in presence of the extension. This study clearly demonstrates that previously reported B.c.I4 is not a single example of a specialized intron, but forms a new functional class with an unusual mode that ensures proper positioning of the 3′ splice site.  相似文献   

8.
Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression.  相似文献   

9.
Recognition of the 5′ splice site by group II introns involves pairing between an exon binding sequence (EBS) 1 within the ID3 stem–loop of domain 1 and a complementary sequence at the 3′ end of exon 1 (IBS1). To identify the molecular basis for splice site definition of a group IIB ai5γ intron, we probed the solution structure of the ID3 stem–loop alone and upon binding of its IBS1 target by solution NMR. The ID3 stem was structured. The base of the ID3 loop was stacked but displayed a highly flexible EBS1 region. The flexibility of EBS1 appears to be a general feature of the ai5γ and the smaller Oceanobacillus iheyensis (O.i.) intron and may help in effective search of conformational space and prevent errors in splicing as a result of fortuitous base-pairing. Binding of IBS1 results in formation of a structured seven base pair duplex that terminates at the 5′ splice site in spite of the potential for additional A-U and G•U pairs. Comparison of these data with conformational features of EBS1–IBS1 duplexes extracted from published structures suggests that termination of the duplex and definition of the splice site are governed by constraints of the helical geometry within the ID3 loop. This feature and flexibility of the uncomplexed ID3 loop appear to be common for both the ai5γ and O.i. introns and may help to fine-tune elements of recognition in group II introns.  相似文献   

10.
Highly conserved sequences at the 5′ splice site and branch site of U12-dependent introns are important determinants for splicing by U12-dependent spliceosomes. This study investigates the in vivo splicing phenotypes of mutations in the branch site consensus sequence of the U12-dependent intron F from a human NOL1 (P120) minigene. Intron F contains a fully consensus branch site sequence (UUCCUUAAC). Mutations at each position were analyzed for their effects on U12-dependent splicing in vivo. Mutations at most positions resulted in a significant reduction of correct U12-dependent splicing. Defects observed included increased unspliced RNA levels, the activation of cryptic U2-dependent 5′ and 3′ splice sites, and the activation of cryptic U12-dependent branch/3′ splice sites. A strong correlation was observed between the predicted thermodynamic stability of the branch site: U12 snRNA interaction and correct U12-dependent splicing. The lack of a polypyrimidine tract between the branch site and 3′ splice site of U12-dependent introns and the observed reliance on base-pairing interactions for correct U12-dependent splicing emphasize the importance of RNA/RNA interactions during U12-dependent intron recognition and proper splice site selection.  相似文献   

11.
Using site-specific incorporation of the photochemical cross-linking reagent 4-thiouridine, we demonstrate the previously unknown association of two proteins with yeast 3′ splice sites. One of these is an unidentified ~122 kDa protein that cross-links to 3′ splice sites during formation of the pre-spliceosome. The other factor is the DExH-box RNA helicase, Prp22p. With substrates functional in the second step of splicing, only very weak cross-linking of Prp22p to intron sequences at the 3′ splice site is observed. In contrast, substrates blocked at the second step exhibit strong cross-linking of Prp22 to intron sequences at the 3′ splice site, but not to adjacent exon sequences. In vitro reconstitution experiments also show that the association of Prp22p with intron sequences at the 3′ splice site is dependent on Prp16p and does not persist when release of mature mRNA from the spliceosome is blocked. Taken together, these results suggest that the 3′ splice site of yeast introns is contacted much earlier than previously envisioned by a protein of ~120 kDa, and that a transient association of Prp22p with the 3′ splice site occurs between the first and second catalytic steps.  相似文献   

12.
13.
14.
All group II introns known to date fold into six functional domains. However, we recently identified an intron in Bacillus cereus ATCC 10987, B.c.I4, that splices 56nt downstream of the expected 3′ splice site in vivo (Tourasse et al. 2005, J. Bacteriol., 187, 5437–5451). In this study, we confirmed by ribonuclease protection assay that the 56-bp segment is part of the intron RNA molecule, and computational prediction suggests that it might form a stable stem-loop structure downstream of domain VI. The splicing of B.c.I4 was further investigated both in vivo and in vitro. Lariat formation proceeded primarily by branching at the ordinary bulged adenosine in domain VI without affecting the fidelity of splicing. In addition, the splicing efficiency of the wild-type intron was better than that of a mutant construct deleted of the 56-bp 3′ extension. These results indicate that the intron has apparently adapted to the extra segment, possibly through conformational adjustments. The extraordinary group II intron B.c.I4 harboring an unprecedented extra 3′ segment constitutes a dramatic example of the flexibility and adaptability of group II introns.  相似文献   

15.
16.
Pre-mRNA splicing involves two transesterification steps catalyzed by the spliceosome. How RNA substrates are positioned in each step and the molecular rearrangements involved, remain obscure. Here, we show that mutations in PRP16, PRP8, SNU114 and the U5 snRNA that affect this process interact genetically with CWC21, that encodes the yeast orthologue of the human SR protein, SRm300/SRRM2. Our microarray analysis shows changes in 3′ splice site selection at elevated temperature in a subset of introns in cwc21Δ cells. Considering all the available data, we propose a role for Cwc21p positioning the 3′ splice site at the transition to the second step conformation of the spliceosome, mediated through its interactions with the U5 snRNP. This suggests a mechanism whereby SRm300/SRRM2, might influence splice site selection in human cells.  相似文献   

17.
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A–E) in a stable stem–loop that includes the normal 5′ splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem–loop and demonstrated editing at this site in human brain. We have shown that in cell culture, base substitutions to mimic editing at different combinations of the six sites profoundly affect relative splicing at the normal and the upstream alternative splice site, but splicing at the downstream alternative splice site was consistently rare. Editing combinations in different splice variants from human brain were determined and are consistent with the effects of editing on splicing observed in cell culture. As RNA editing usually occurs close to exon/intron boundaries, this is likely to be a general phenomenon and suggests an important novel role for RNA editing.  相似文献   

18.
The frequency distribution of mutation-induced aberrant 3′ splice sites (3′ss) in exons and introns is more complex than for 5′ splice sites, largely owing to sequence constraints upstream of intron/exon boundaries. As a result, prediction of their localization remains a challenging task. Here, nucleotide sequences of previously reported 218 aberrant 3′ss activated by disease-causing mutations in 131 human genes were compared with their authentic counterparts using currently available splice site prediction tools. Each tested algorithm distinguished authentic 3′ss from cryptic sites more effectively than from de novo sites. The best discrimination between aberrant and authentic 3′ss was achieved by the maximum entropy model. Almost one half of aberrant 3′ss was activated by AG-creating mutations and ~95% of the newly created AGs were selected in vivo. The overall nucleotide structure upstream of aberrant 3′ss was characterized by higher purine content than for authentic sites, particularly in position −3, that may be compensated by more stringent requirements for positive and negative nucleotide signatures centred around position −11. A newly developed online database of aberrant 3′ss will facilitate identification of splicing mutations in a gene or phenotype of interest and future optimization of splice site prediction tools.  相似文献   

19.
Intron diversity facilitates regulated gene expression and alternative splicing. Spliceosomes excise introns after recognizing their splicing signals: the 5′-splice site (5′ss), branchpoint (BP) and 3′-splice site (3′ss). The latter two signals are recognized by U2 small nuclear ribonucleoprotein (snRNP) and its accessory factors (U2AFs), but longer spacings between them result in weaker splicing. Here, we show that excision of introns with a BP-distant 3′ss (e.g. rap1 intron 2) requires the ubiquitin-fold-activated splicing regulator Sde2 in Schizosaccharomyces pombe. By monitoring splicing-specific ura4 reporters in a collection of S. pombe mutants, Cay1 and Tls1 were identified as additional regulators of this process. The role of Sde2, Cay1 and Tls1 was further confirmed by increasing BP–3′ss spacings in a canonical tho5 intron. We also examined BP-distant exons spliced independently of these factors and observed that RNA secondary structures possibly bridged the gap between the two signals. These proteins may guide the 3′ss towards the spliceosome''s catalytic centre by folding the RNA between the BP and 3′ss. Orthologues of Sde2, Cay1 and Tls1, although missing in the intron-poor Saccharomyces cerevisiae, are present in intron-rich eukaryotes, including humans. This type of intron-specific pre-mRNA splicing appears to have evolved for regulated gene expression and alternative splicing of key heterochromatin factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号