首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang H  Zeng XJ  Wang HX  Zhang LK  Dong XL  Guo S  Du J  Li HH  Tang CS 《Peptides》2011,32(10):2108-2115
Angiotensin II (Ang II) is an important regulator of cardiac function and injury in hypertension. The novel Ang IV peptide/AT4 receptor system has been implicated in several physiological functions and has some effects opposite to those of Ang II. However, little is known about the role of this system in Ang II-induced cardiac injury. Here we studied the effect of Ang IV on Ang II-induced cardiac dysfunction and injury using isolated rat hearts, neonatal cardiomyocytes and cardiac fibroblasts. We found that Ang IV significantly improved Ang II-induced cardiac dysfunction and injury in the isolated heart in response to ischemia/reperfusion (I/R). Moreover, Ang IV inhibited Ang II-induced cardiac cell apoptosis, cardiomyocyte hypertrophy, and proliferation and collagen synthesis of cardiac fibroblasts; these effects were mediated through the AT4 receptor as confirmed by siRNA knockdown. These findings suggest that Ang IV may have a protective effect on Ang II-induced cardiac injury and dysfunction and may be a novel therapeutic target for hypertensive heart disease.  相似文献   

2.
3.
Atrial fibrosis influences atrial fibrillation (AF) development by transforming growth factor beta 1 (TGF-β1)/Smad pathway. Although microRNAs are implicated in the pathogenesis of various diseases, information regarding the functional role of microRNAs in atrial dysfunction is limited. In the present study, we found that microRNA-27b (miR-27b) was the dominant member of miR-27 family expressed in left atrium. Moreover, the expression of miR-27b was significantly reduced after angiotensin II (AngII) infusion. Masson’s trichrome staining revealed that delivery of miR-27b adeno-associated virus to left atrium led to a decrease in atrial fibrosis induced by AngII. The increased expression of collagen I, collagen III, plasminogen activator inhibitor type 1 and alpha smooth muscle actin was also inhibited after miR-27b upregulation. In isolated perfused hearts, miR-27b restoration markedly attenuated AngII-induced increase in interatrial conduction time, AF incidence and AF duration. Furthermore, our data evidence that miR-27b is a novel miRNA that targets ALK5, a receptor of TGF-β1, through binding to the 3′ untranslated region of ALK5 mRNA. Ectopic miR-27b suppressed luciferase activity and expression of ALK5, whereas inhibition of miR-27b increased ALK5 luciferase activity and expression. Additionally, miR-27b inhibited AngII-induced Smad-2/3 phosphorylation without altering Smad-1 activity. Taken together, our study demonstrates that miR-27b ameliorates atrial fibrosis and AF through inactivation of Smad-2/3 pathway by targeting ALK5, suggesting miR-27b may play an anti-fibrotic role in left atrium and function as a novel therapeutic target for the treatment of cardiac dysfunction.  相似文献   

4.
Endothelial-to-mesenchymal transition (EndMT) is involved in cardiac fibrosis induced by angiotensin II (Ang II). A disintegrin and metalloproteinase 8 (ADAM8), a member of ADAMs family, participates in cell adhesion, proteolysis and various signaling. However, its effects on the development of cardiac fibrosis remain completely unknown. This study aimed to reveal whether ADAM8 aggravates cardiac fibrosis induced by Ang II in vivo and in vitro. The C57BL/6J mice or cardiac endothelial cells were subjected to Ang II infusion to induce fibrosis. The results showed that systolic blood pressure and diastolic blood pressure were significantly increased under Ang II infusion, and ADAM8 was up-regulated. ADAM8 inhibition attenuated Ang II-induced cardiac dysfunction. ADAM8 knockdown suppressed Ang II-induced cardiac fibrosis as evidenced by the down-regulation of CTGF, collagen I, and collagen III. In addition, the endothelial marker (VE-cadherin) was decreased, whilst mesenchymal markers (α-SMA and FSP1) were increased following Ang II infusion. However, ADAM8 repression inhibited Ang II-induced EndMT. Moreover, ADAM8 silencing repressed the activation of TGF-β1/Smad2/Smad3 pathways. Consistent with the results in vivo, we also found the inhibitory effects of ADAM8 inhibition on EndMT in vitro. All data suggest that ADAM8 promotes Ang II-induced cardiac fibrosis and EndMT via activating TGF-β1/Smad2/Smad3 pathways.  相似文献   

5.
Adenosine has been found to be cardioprotective during episodes of cardiac ischemia/reperfusion through activation of the A1 and possibly A3 receptors. Therefore, we have investigated whether activation of these receptors can protect also against apoptotic death induced by angiotensin II (Ang II) in neonatal rat cardiomyocyte cultures. Exposure to Ang II (10 nM) resulted in a 3-fold increase in programmed cell death (p < 0.05). Pretreatment with the A1 adenosine receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 1 M), abolished the effects of Ang II on programmed cardiomyocyte death. Moreover, exposure of cells to the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (CPX) before pretreatment with CCPA, prevented the protective effect of the latter. Pretreatment with the A3 adenosine receptor agonist N6-(3-iodobenzyl) adenosine-5-N-methyluronamide (IB-MECA, 0.1 M), led to a partial decrease in apoptotic rate induced by Ang II. Exposure of myocytes to Ang II caused an immediate increase in the concentration of intracellular free Ca2+ that lasted 40–60 sec. Pre-treatment of cells with CCPA or IB-MECA did not block Ang II-induced Ca2+ elevation. In conclusion, activation of adenosine A1 receptors can protect the cardiac cells from apoptosis induced by Ang II, while activation of the adenosine A3 receptors confers partial cardioprotection.  相似文献   

6.
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion.  相似文献   

7.
8.
Breviscapine is a mixture of flavonoid glycosides extracted from the Chinese herbs. Previous studies have shown that breviscapine possesses comprehensive pharmacological functions. However, very little is known about whether breviscapine have protective role on cardiac hypertrophy. The aim of the present study was to determine whether breviscapine attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and pressure‐overload‐induced cardiac hypertrophy in mice in vivo. Our data demonstrated that breviscapine (2.5–15 µM) dose‐dependently blocked cardiac hypertrophy induced by Ang II (1 µM) in vitro. The results further revealed that breviscapine (50 mg/kg/day) prevented cardiac hypertrophy induced by aortic banding as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of breviscapine on cardiac hypertrophy is mediated by disrupting PKC‐α‐dependent ERK1/2 and PI3K/AKT signaling. Further studies showed that breviscapine inhibited inflammation by blocking NF‐κB signaling, and attenuated fibrosis and collagen synthesis through abrogating Smad2/3 signaling. Therefore, these findings indicate that breviscapine, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of PKC‐α‐dependent signaling. J. Cell. Biochem. 109: 1158–1171, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

11.
Cardiac fibroblasts are able to sense the rigidity of their environment. The present study examines whether the stiffness of the substrate in cardiac fibroblast culture can influence the release of interleukin‐6 (IL‐6), interleukin‐11 (IL‐11) and soluble receptor of IL‐6 (sIL‐6R). It also examines the roles of integrin α2β1 activation and intracellular signalling in these processes. Cardiac fibroblasts were cultured on polyacrylamide gels and grafted to collagen, with an elasticity of E = 2.23 ± 0.8 kPa (soft gel) and E = 8.28 ± 1.06 kPa (stiff gel, measured by Atomic Force Microscope). Flow cytometry and ELISA demonstrated that the fibroblasts cultured on the soft gel demonstrated higher expression of the α2 integrin subunit and increased α2β1 integrin count and released higher levels of IL‐6 and sIL‐6R than those on the stiff gel. Substrate elasticity did not modify fibroblast IL‐11 content. The silencing of the α2 integrin subunit decreased the release of IL‐6. Similar effects were induced by TC‐I 15 (an α2β1 integrin inhibitor). The IL‐6 levels in the serum and heart were markedly lower in α2 integrin‐deficient mice B6.Cg‐Itga2tm1.1Tkun/tm1.1Tkun than wild type. Inhibition of Src kinase by AZM 475271 modifies the IL‐6 level. sIL‐6R secretion is not dependent on α2β1 integrin. Conclusion: The elastic properties of the substrate influence the release of IL‐6 by cardiac fibroblasts, and this effect is dependent on α2β1 integrin and kinase Src activation.  相似文献   

12.
13.
14.
Objectives:To investigate the therapeutic effect of Echinacoside on uremia-induced sciatic nerve injury and explore the specific molecular mechanism and role of α-Klotho.Methods:SD rats were given continuous gavage of adenine to prepare a uremia-induced sciatic nerve injury model. The model was given either Echinacoside or α-Klotho by gavage. Histopathological changes of kidney and sciatic nerve were detected by H&E staining. The changes of creatinine, urea nitrogen, and urine protein were detected by biochemical detection. The changes of IL-1β and IL-18 were detected by ELISA. Nerve activity-related indicators were detected by biochemical detection. Changes in related mRNA and protein expression were detected by qPCR and western blot.Results:Creatinine, urea nitrogen, urine protein, and malondialdehyde (MDA) in the model group were significantly increased and inhibited by Echinacoside and α-Klotho treatment with Echinacoside dose-dependence. Meanwhile, the activities of ATP concentration, potassium adenosine triphosphate (Na+, K+ ATPase), succinate dehydrogenase (SDH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) showed opposite trends.Conclusions:Echinacoside can significantly relieve uremia-induced sciatic nerve injury in rats. Its specific molecular mechanism is related to the inhibition of the classical cellular pyroptosis pathway, which is likely achieved by promoting α-Klotho expression.  相似文献   

15.
The recovery of blood supply after a period of myocardial ischaemia does not restore the heart function and instead results in a serious dysfunction called myocardial ischaemia‐reperfusion injury (IRI), which involves several complex pathophysiological processes. Mitochondria have a wide range of functions in maintaining the cellular energy supply, cell signalling and programmed cell death. When mitochondrial function is insufficient or disordered, it may have adverse effects on myocardial ischaemia‐reperfusion and therefore mitochondrial dysfunction caused by oxidative stress a core molecular mechanism of IRI. Peroxisome proliferator‐activated receptor gamma co‐activator 1α (PGC‐1α) is an important antioxidant molecule found in mitochondria. However, its role in IRI has not yet been systematically summarized. In this review, we speculate the role of PGC‐1α as a key regulator of mitonuclear communication, which may interacts with nuclear factor, erythroid 2 like ‐1 and ‐2 (NRF‐1/2) to inhibit mitochondrial oxidative stress, promote the clearance of damaged mitochondria, enhance mitochondrial biogenesis, and reduce the burden of IRI.  相似文献   

16.
《PLoS biology》2021,19(11)
During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.

This study elucidates the role of the protein kinases p37γ and p38δ in regulating the metabolic switch that occurs in early postnatal development, revealing that they inhibit glycogen synthase 1 and glycogen metabolism. Deregulation of this mechanism results in cardiac defects and metabolic alterations which can be prevented by maternal fatty acid diet supplementation during pregnancy and lactation.  相似文献   

17.
The current study aimed to explore the functions and roles of microRNA-193b (miR-193b) in the myocardium with ischemia-reperfusion (I/R) injury and a potential therapeutic method for myocardial I/R injury. The mice were subjected to myocardial I/R with or without miR-193b pretreatment. The infarct size and myocardial enzymes were detected. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay was conducted to investigate the effect of miR-193b on cardiomyocyte apoptosis. The expression levels of miR-193b and mastermind-like 1 (MAML1) were validated by quantitative real-time polymerase chain reaction and Western blot analysis. The results suggested that the miR-193b expression level was significantly downregulated in the myocardium with I/R injury compared with control group. miR-193b overexpression is able to reduce infarct size and myocardial enzymes after myocardial I/R injury. Furthermore, overexpression of miR-193b could alleviate the apoptosis level after myocardial I/R injury. Taken together, the present study demonstrated that upregulated miRNA-193b alleviated myocardial I/R injury via targeting MAML1.  相似文献   

18.
The relative activity of Flavobacterium whole cells on the enzymatic synthesis of epoxides from α,β-chlorohydrins, -bromohydrins, and -iodohydrins is described.  相似文献   

19.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

20.
Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.Subject terms: Epigenetics, Gene regulation, Immunological disorders, T cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号