首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.  相似文献   

2.
3.
Although most bacteria contain a single circular chromosome, some have complex genomes, and all Vibrio species studied so far contain both a large and a small chromosome. In recent years, the divided genome of Vibrio cholerae has proven to be an interesting model system with both parallels to and novel features compared with the genome of Escherichia coli. While factors influencing the replication and segregation of both chromosomes have begun to be elucidated, much remains to be learned about the maintenance of this genome and of complex bacterial genomes generally. An important aspect of replicating any genome is the correct timing of initiation, without which organisms risk aneuploidy. During DNA replication in E. coli, newly replicated origins cannot immediately reinitiate because they undergo sequestration by the SeqA protein, which binds hemimethylated origin DNA. This DNA is already methylated by Dam on the template strand and later becomes fully methylated; aberrant amounts of Dam or the deletion of seqA leads to asynchronous replication. In our study, hemimethylated DNA was detected at both origins of V. cholerae, suggesting that these origins are also subject to sequestration. The overproduction of SeqA led to a loss of viability, the condensation of DNA, and a filamentous morphology. Cells with abnormal DNA content arose in the population, and replication was inhibited as determined by a reduced ratio of origin to terminus DNA in SeqA-overexpressing cells. Thus, excessive SeqA negatively affects replication in V. cholerae and prevents correct progression to downstream cell cycle events such as segregation and cell division.  相似文献   

4.
Initiation of eukaryotic DNA replication commences when the origin recognition complex (ORC) binds to DNA, recruiting helicases, polymerases, and necessary cofactors. While the biochemical mechanism and factors involved in replication initiation appear to be highly conserved, the DNA sequences at which these events take place in different organisms are not. Thus, while ORC appears to bind to specific DNA sequences in budding yeast, there is increasing new evidence that metazoan ORC complexes do not rely on sequence to be directed to origins of replication. Here, we review examples of specific and non-specific initiation, and we consider what, if not DNA sequence, accounts for DNA binding of ORC to defined regions in eukaryotic genomes.  相似文献   

5.
Although replication proteins are conserved among eukaryotes, the sequence requirements for replication initiation differ between species. In all species, however, replication origins fire asynchronously throughout S phase. The temporal program of origin firing is reproducible in cell populations but largely probabilistic at the single-cell level. The mechanisms and the significance of this program are unclear. Replication timing has been correlated with gene activity in metazoans but not in yeast. One potential role for a temporal regulation of origin firing is to minimize fluctuations in replication end time and avoid persistence of unreplicated DNA in mitosis. Here, we have extracted the population-averaged temporal profiles of replication initiation rates for S. cerevisiae, S. pombe, D. melanogaster, X. laevis and H. sapiens from genome-wide replication timing and DNA combing data. All the profiles have a strikingly similar shape, increasing during the first half of S phase then decreasing before its end. A previously proposed minimal model of stochastic initiation modulated by accumulation of a recyclable, limiting replication-fork factor and fork-promoted initiation of new origins, quantitatively described the observed profiles without requiring new implementations.The selective pressure for timely completion of genome replication and optimal usage of replication proteins that must be imported into the cell nucleus can explain the generic shape of the profiles. We have identified a universal behavior of eukaryotic replication initiation that transcends the mechanisms of origin specification. The population-averaged efficiency of replication origin usage changes during S phase in a strikingly similar manner in a highly diverse set of eukaryotes. The quantitative model previously proposed for origin activation in X. laevis can be generalized to explain this evolutionary conservation.  相似文献   

6.
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein–protein and protein–DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis‐acting sequences that serve as replication origins and the trans‐acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed. J. Cell. Biochem. 106: 512–520, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.

Background

DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood.

Results

We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions.

Conclusions

The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.  相似文献   

8.
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.  相似文献   

9.
10.
Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD) in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements), which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 × 10−10. This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes.  相似文献   

11.
12.
Mammalian DNA replication origins localize to sites that range from base pairs to tens of kilobases. A regular distribution of initiations in individual cell cycles suggests that only a limited number of these numerous potential start sites are converted into activated origins. Origin interference can silence redundant origins; however, it is currently unknown whether interference participates in spacing functional human initiation events. By using a novel hybridization strategy, genomic Morse code, on single combed DNA molecules from primary keratinocytes, we report the initiation sites present on 1.5 Mb of human chromosome 14q11.2. We confirm that initiation zones are widespread in human cells, map to intergenic regions, and contain sequence motifs found at other mammalian initiation zones. Origins used per cell cycle are less abundant than the potential sites of initiation, and their limited use increases the spacing between initiation events. Between-zone interference decreases in proportion to the distance from the active origin, whereas within-zone interference is 100% efficient. These results identify a hierarchical organization of origin activity in human cells. Functional origins govern the probability that nearby origins will fire in the context of multiple potential start sites of DNA replication, and this is mediated by origin interference.  相似文献   

13.
Origin recognition complex (ORC), consisting of six subunits ORC1–6, is known to bind to replication origins and function in the initiation of DNA replication in eukaryotic cells. In contrast to the fact that Saccharomyces cerevisiae ORC recognizes the replication origin in a sequence-specific manner, metazoan ORC has not exhibited strict sequence-specificity for DNA binding. Here we report that human ORC binds preferentially to G-quadruplex (G4)-preferable G-rich RNA or single-stranded DNA (ssDNA). We mapped the G-rich RNA-binding domain in the ORC1 subunit, in a region adjacent to its ATPase domain. This domain itself has an ability to preferentially recognize G4-preferable sequences of ssDNA. Furthermore, we found, by structure modeling, that the G-rich RNA-binding domain is similar to the N-terminal portion of AdoMet_MTase domain of mammalian DNA methyltransferase 1. Therefore, in contrast with the binding to double-stranded DNA, human ORC has an apparent sequence preference with respect to its RNA/ssDNA binding. Interestingly, this specificity coincides with the common signature present in most of the human replication origins. We expect that our findings provide new insights into the regulations of function and chromatin binding of metazoan ORCs.  相似文献   

14.
A considerable share of bacterial species maintains multipartite genomes. Precise coordination of genome replication and segregation with cell growth and division is vital for proliferation of these bacteria. The α‐proteobacterium Sinorhizobium meliloti possesses a tripartite genome composed of one chromosome and the megaplasmids pSymA and pSymB. Here, we investigated the spatiotemporal pattern of segregation of these S. meliloti replicons at single cell level. Duplication of chromosomal and megaplasmid origins of replication occurred spatially and temporally separated, and only once per cell cycle. Tracking of FROS (fluorescent repressor operator system)‐labelled origins revealed a strict temporal order of segregation events commencing with the chromosome followed by pSymA and then by pSymB. The repA2B2C2 region derived from pSymA was sufficient to confer the spatiotemporal behaviour of this megaplasmid to a small plasmid. Altering activity of the ubiquitous prokaryotic replication initiator DnaA, either positively or negatively, resulted in an increase in replication initiation events or G1 arrest of the chromosome only. This suggests that interference with DnaA activity does not affect replication initiation control of the megaplasmids.  相似文献   

15.
The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.  相似文献   

16.

Background

Eukaryotic cells seem unable to monitor replication completion during normal S phase, yet must ensure a reliable replication completion time. This is an acute problem in early Xenopus embryos since DNA replication origins are located and activated stochastically, leading to the random completion problem. DNA combing, kinetic modelling and other studies using Xenopus egg extracts have suggested that potential origins are much more abundant than actual initiation events and that the time-dependent rate of initiation, I(t), markedly increases through S phase to ensure the rapid completion of unreplicated gaps and a narrow distribution of completion times. However, the molecular mechanism that underlies this increase has remained obscure.

Methodology/Principal Findings

Using both previous and novel DNA combing data we have confirmed that I(t) increases through S phase but have also established that it progressively decreases before the end of S phase. To explore plausible biochemical scenarios that might explain these features, we have performed comparisons between numerical simulations and DNA combing data. Several simple models were tested: i) recycling of a limiting replication fork component from completed replicons; ii) time-dependent increase in origin efficiency; iii) time-dependent increase in availability of an initially limiting factor, e.g. by nuclear import. None of these potential mechanisms could on its own account for the data. We propose a model that combines time-dependent changes in availability of a replication factor and a fork-density dependent affinity of this factor for potential origins. This novel model quantitatively and robustly accounted for the observed changes in initiation rate and fork density.

Conclusions/Significance

This work provides a refined temporal profile of replication initiation rates and a robust, dynamic model that quantitatively explains replication origin usage during early embryonic S phase. These results have significant implications for the organisation of replication origins in higher eukaryotes.  相似文献   

17.
In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase.  相似文献   

18.
Rhind N 《Nature cell biology》2006,8(12):1313-1316
Regions of metazoan genomes replicate at defined times within S phase. This observation suggests that replication origins fire with a defined timing pattern that remains the same from cycle to cycle. However, an alterative model based on the stochastic firing of origins may also explain replication timing. This model assumes varying origin efficiency instead of a strict origin-timing programme. Here, we discuss the evidence for both models.  相似文献   

19.
Identification of the nucleotide consensus sequence in mammalian replication origins is a difficult and controversial problem. The hypothesis that local DNA topology could be involved in recognition by replication proteins is an exciting possibility. Secondary DNA structures, including intrinsically bent DNA, can be easily detected, and they may indicate a specific pattern in or near mammalian replication origins. This work presents the entire mapping of the intrinsically bent DNA sites (IBDSs), using in silico analysis and a circular permutation assay, of the DNA replication origins oriGNAI3, oriC, oriB, and oriA in the mammalian amplified AMPD2 gene domain. The results show that each origin presents an IBDS that flanks the straight core of these DNA replication sites. In addition, the in silico prediction of the nucleosome positioning reveals a strong indication that the center of an IBDS is localized in a nucleosome-free region (NFR). The structure of each of these curved sites is presented together with their helical parameters and topology. Together, the data that we present here indicate that the oriGNAI3 origin where preferential firing to the replication initiation events in the amplified AMPD2 domain occurs is the only origin that presents a straight, narrow region that is flanked on both sides by two intrinsically bent DNA sites within a short distance (~300 bp); however, all of the origins present at least one IBDS, which is localized in the NFR region. These results indicate that structural features could be implicated in the mammalian DNA replication origin and support the possibility of detecting and characterizing these segments.  相似文献   

20.
DNA replication initiates at specific positions termed replication origins. Genome-wide studies of human replication origins have shown that origins are organized into replication initiation zones. However, only few replication initiation zones have been described so far. Moreover, few origins were mapped in other mammalian species besides human and mouse. Here we analyzed pattern of short nascent strands in the X inactivation center (XIC) of vole Microtus levis in fibroblasts, trophoblast stem cells, and extraembryonic endoderm stem cells and confirmed origins locations by ChIP approach. We found that replication could be initiated in a significant part of XIC. We also analyzed state of XIC chromatin in these cell types. We compared origin localization in the mouse and vole XIC. Interestingly, origins associated with gene promoters are conserved in these species. The data obtained allow us to suggest that the X inactivation center of M. levis is one extended replication initiation zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号