首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
膨胀显微成像技术(expansion microscopy,ExM)是一种新型超分辨成像技术。该技术借助可膨胀水凝胶均匀地物理放大生物样本,在常规光学成像条件下实现超分辨成像。ExM适用于细胞、组织切片等多种类型生物样本。蛋白质、核酸、脂质等生物大分子均可借助ExM进行超分辨成像。ExM可与共聚焦显微镜、光片显微镜、超高分辨显微镜联合使用,进一步提高成像分辨率。近年来,多种从基础ExM拓展而来的衍生技术进一步促进了该技术的实际应用。本文综述了ExM及其衍生技术的基本原理、ExM与不同成像技术联用的研究进展及ExM在不同类型生物样本中的应用进展,并对ExM技术的发展前景做出展望。  相似文献   

2.
Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.  相似文献   

3.

Background

Physical exercise has positive effects on cognitive function in elderly people. It is unknown, however, if combinations of non-pharmaceutical interventions can produce more benefits than single ones. This study aimed to identify if physical exercise combined with music improves cognitive function in normal elderly people more than exercise alone.

Methods

We enrolled 119 subjects (age 65–84 years old). Forty subjects performed physical exercise (once a week for an hour with professional trainers) with musical accompaniment (ExM group), developed by YAMAHA Music Foundation; 40 subjects performed the same exercise without music (Ex group); 39 subjects were the control group (Cont group). Before and after the year-long intervention, each patient was assessed by neuropsychological batteries. MRIs were performed before and after intervention; the Voxel-based Specific Regional analysis system for Alzheimer''s Disease (VSRAD) was used to assess medial temporal lobe atrophy.

Results

Analysis of variance (ANOVA) was significant only in visuospatial function. The multiple comparison (ExM vs. Ex, ExM vs. Cont, Ex vs. Cont) was significant between the ExM and Cont group. Intra-group analyses before and after intervention revealed significant improvement in visuospatial function in the ExM group, and significant improvements in other batteries in all three groups. The VSRAD score significantly worsened in the ExM and Ex groups.

Conclusions

Physical exercise combined with music produced more positive effects on cognitive function in elderly people than exercise alone. We attributed this improvement to the multifaceted nature of combining physical exercise with music, which can act simultaneously as both cognitive and physical training.

Trial Registration

UMIN Clinical Trials Registry (UMIN-CTR) UMIN000012148  相似文献   

4.
5.
Developing processes for the conversion of biomass for use in transportation fuels production is becoming a critically important economic and engineering challenge. Dilute acid pretreatment is a promising technology for increasing the enzymatic digestibility of lignocellulosic biomass. However, a deeper understanding of the pretreatability of biomass is needed so that the rate of formation and yields of sugars can be increased. Xylan is an important hemicellulosic component of the plant cell wall and acts as a barrier to cellulose, essentially blocking cellulase action. To better understand xylan hydrolysis in corn stover, we have studied changes in the distribution of xylan caused by dilute acid pretreatment using correlative microscopy. A dramatic loss of xylan antibody signal from the center of the cell wall and an increase or retention of xylan at the plasma membrane interface and middle lamella of the cell were observed by confocal laser scanning microscopy (CLSM). We also observed a reduction in xylan fluorescence signal by CLSM that is generally consistent with the decrease in xylan content measured experimentally in the bulk sample, however, the compartmentalization of this xylan retention was not anticipated. Biotechnol. Bioeng. 2009;102: 1537–1543. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens'' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years.  相似文献   

7.
Nuclear localization of the testis determining gene product SRY   总被引:6,自引:1,他引:5       下载免费PDF全文
We have studied the expression of the human SRY protein (termed p27SRY) in two different cell lines by using specific antibodies. Confocal microscopy enabled us to localize p27SRY precisely in the nucleus in a discrete punctuate pattern. Furthermore, through microinjection experiments, we have demonstrated that the localization of the p27SRY protein into the nucleus was an event involving the NH2-terminal part of the high mobility group (HMG) domain. With the help of several synthetic peptides and various p27SRY mutants, we have characterized a bipartite basic motif in this part of the protein corresponding to a nuclear localization signal. This nuclear localization signal appears to be highly conserved in SRY box- and HMB box-containing proteins, suggesting common properties of nuclear targeting within the HMG box protein family.  相似文献   

8.
The hypersensitive response has been mostly studied by molecular and biochemical methods after sample destruction. The development of imaging techniques allows the monitoring of physiological changes before any signs of cell death. Here, we follow the early steps of a hypersensitive-like response induced by the bacterial elicitor harpin in Nicotiana sp. We describe cytological modifications after inoculation of the harpin protein, using confocal fluorescence microscopy (CFM) and optical coherence tomography (OCT), an interferometric-based microscopy. The changes detected by CFM occurred 5 h after harpin infiltration and corresponded to a redistribution of the chloroplasts from the upper to the inner regions of the palisade mesophyll cells which could be related to a perturbation in the microtubule network. Using OCT, we were able to detect a decrease in chloroplast backscattered signal as early as 30 min after harpin infiltration. A simple physical model, which accounted for the structure and distribution of thylakoid membranes, suggested that this loss of scattering could be associated with a modification in the refractive index of the thylakoid membranes. Our OCT observations were correlated with a decrease in photosynthesis, emphasizing changes in chloroplast structure as one of the earliest hallmarks of plant hypersensitive cell death.  相似文献   

9.
Microscopy has become increasingly important for analysis of cells and cell function in recent years. This is due in large part to advances in light microscopy that facilitate quantitative studies and improve imaging of living cells. Analysis of fluorescence signals has often been a key feature in these advances. Such studies involve a number of techniques, including imaging of fluorescently labeled proteins in living cells, single-cell physiological experiments using fluorescent indicator probes, and immunofluorescence localization. The importance of fluorescence microscopy notwithstanding, there are instances in which electron microscopy provides unique information about cell structure and function. Correlative microscopy in which a fluorescence signal is reconciled with a signal from the electron microscope is an additional tool that can provide powerful information for cellular analysis. Here we review two different methodologies for correlative fluorescence and electron microscopy using ultrathin cryosections and the advantages attendant on this approach. (J Histochem Cytochem 49:803-808, 2001)  相似文献   

10.
Cell tracking with magnetic resonance imaging (MRI) and iron nanoparticles is commonly used to monitor the fate of implanted cells in preclinical disease models. Few studies have employed these methods to study cancer cells because proliferative iron-labeled cancer cells will lose the label as they divide. In this study, we evaluate the potential for retention of the iron nanoparticle label, and resulting MRI signal, to serve as a marker for slowly dividing cancer cells. Green fluorescent protein-transfected MDA-MB-231 breast cancer cells were labeled with red fluorescent micron-sized superparamagnetic iron oxide (MPIO) nanoparticles. Cells were examined in vitro at multiple time points after labeling by staining for iron-labeled cells and by flow cytometric detection of the fluorescent MPIO. Severe combined immune deficiency (SCID) mice were implanted with 5 x 105 MPIO-labeled or unlabeled cells in the mammary fat pad and MRI was performed weekly until 28 days after injection. Microscopy was performed to validate MRI. In vitro assays revealed a very small percentage of cells that retained MPIO at 14 days after labeling. Regions of signal loss were observed in MRI of primary tumors that developed from iron-labeled cancer cells. Small focal regions of signal loss were detected in images of the axillary and brachial nodes in six of eight mice, at day 14 or later, with microscopy confirming the presence of iron-labeled cancer cells. Our data suggest an interesting role for cell tracking with iron particles since label retention leads to persistent signal void, allowing proliferative status to be determined.  相似文献   

11.
Cocaine Induces Apoptosis in Cortical Neurons of Fetal Mice   总被引:6,自引:1,他引:5  
Abstract: Exposure of fetal mouse brain cocultures to cocaine results selectively in the loss of neurites followed by neuronal death. By using enriched neuronal cultures, we here demonstrate that disappearance of neurons, when cultured with cocaine, is caused by apoptosis, based on (1) characteristic morphology of apoptotic nuclei at the level of neurons but not of glial cells by optic microscopy, and on total cell pellets by electron microscopy; (2) fragmentation of total DNA with a typical "ladder" pattern on agarose gels; (3) extensive in situ DNA fragmentation labeling (TUNEL method); and (4) prevention of cell loss by cycloheximide. The major metabolites of cocaine have no detectable effects on neurons, indicating that apoptosis is due to cocaine itself. Inappropriate neuronal apoptosis in cocaine-exposed fetal brain could perturb the neurodevelopmental program and contribute to the quantitative neuronal defects that are too frequently reported in the offspring of cocaine-abusing pregnant women.  相似文献   

12.
Proper regulation of genome architecture and activity is essential for the development and function of multicellular organisms. Histone modifications, acting in combination, specify these activity states at individual genomic loci. However, the methods used to study these modifications often require either a large number of cells or are limited to targeting one histone mark at a time. Here, we developed a new method called Single Cell Evaluation of Post-TRanslational Epigenetic Encoding (SCEPTRE) that uses Expansion Microscopy (ExM) to visualize and quantify multiple histone modifications at non-repetitive genomic regions in single cells at a spatial resolution of ∼75 nm. Using SCEPTRE, we distinguished multiple histone modifications at a single housekeeping gene, quantified histone modification levels at multiple developmentally-regulated genes in individual cells, and evaluated the relationship between histone modifications and RNA polymerase II loading at individual loci. We find extensive variability in epigenetic states between individual gene loci hidden from current population-averaged measurements. These findings establish SCEPTRE as a new technique for multiplexed detection of combinatorial chromatin states at single genomic loci in single cells.  相似文献   

13.
Sexual signals are important in attracting and choosing mates; however, these signals and their associated preferences are often costly and frequently lost. Despite the prevalence of signaling system loss in many taxa, the factors leading to signal loss remain poorly understood. Here, we test the hypothesis that complexity in signal loss scenarios is due to the context‐dependent nature of the many factors affecting signal loss itself. Using the Avida digital life platform, we evolved 50 replicates of ~250 lineages, each with a unique combination of parameters, including whether signaling is obligate or facultative; genetic linkage between signaling and receiving genes; population size; and strength of preference for signals. Each of these factors ostensibly plays a crucial role in signal loss, but was found to do so only under specific conditions. Under obligate signaling, genetic linkage, but not population size, influenced signal loss; under facultative signaling, genetic linkage does not have significant influence. Somewhat surprisingly, only a total loss of preference in the obligate signaling populations led to total signal loss, indicating that even a modest amount of preference is enough to maintain signaling systems. Strength of preference proved to be the strongest single force preventing signal loss, as it consistently overcame the potential effects of drift within our study. Our findings suggest that signaling loss is often dependent on not just preference for signals, population size, and genetic linkage, but also whether signals are required to initiate mating. These data provide an understanding of the factors (and their interactions) that may facilitate the maintenance of sexual signals.  相似文献   

14.
Hopt A  Neher E 《Biophysical journal》2001,80(4):2029-2036
Two-photon fluorescence excitation is being increasingly used in laser scan microscopy due to very low photodamage induced by this technique under normal operation. However, excitation intensity has to be kept low, because nonlinear photodamage sets in when laser power is increased above a certain threshold. We studied this kind of damage in bovine adrenal chromaffin cells, using two different indicators of damage: changes in resting [Ca(2+)] level and the degranulation reaction. In agreement with previous studies, we found that, for both criteria, damage is proportional to the integral (over space and time) of light intensity raised to a power approximately 2.5. Thus, widening the laser pulse shape at constant average intensity both in time and in focal volume is beneficial for avoiding this kind of damage. Both measures, of course, reduce the two-photon fluorescence excitation. However, loss of signal can be compensated by increasing excitation power, such that, at constant damaging potential, signals may be even larger with long pulses and large focal volumes, because the exponent of the power law of damage is higher (mu approximately 2.5) than that of the two-photon signal (mu approximately 2).  相似文献   

15.
Garini Y  Gil A  Bar-Am I  Cabib D  Katzir N 《Cytometry》1999,35(3):214-226
BACKGROUND: Various approaches that were recently developed demonstrate the ability to simultaneously detect all human (or other species) chromosomes by using combinatorial labeling and fluorescence in situ hybridization (FISH). With the growing interest in this field, it is important to develop tools for optimizing and estimating the accuracy of different experimental methods. METHODS: We have analyzed the principles of multiple color fluorescence imaging microscopy. First, formalism based on the physical principles of fluorescence microscopy and noise analysis is introduced. Next, a signal to noise (S/N) analysis is performed and summarized in a simple accuracy criterion. The analysis assumes shot noise to be the dominant source of noise. RESULTS: The accuracy criterion was used to calculate the S/N of multicolor FISH (M-FISH), spectral karyotyping, ratio imaging, and a method based on using a set of broad band filters. Spectral karyotyping is tested on various types of samples and shows accurate classifications. We have also tested classification accuracy as a function of total measurement time. CONCLUSIONS: The accuracy criterion that we have developed can be used for optimizing and analyzing different multiple color fluorescence microscopy methods. The assumption that shot noise is dominant in these measurements is supported by our measurements.  相似文献   

16.
The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration.  相似文献   

17.
JNK and p38 protein kinases are involved in the signal transduction of apoptotic stimulus. JNK and p38 are activated by dual phosphorylation on threonine and tyrosine residues. Different techniques such as Western blotting (WB) and confocal microscopy analysis have been developed to detect the activation by using antibodies that recognize the phosphorylated forms of both enzymes. However, these techniques are time consuming, not quantitative, and dependent on subjective interpretation. Herein, we describe a flow cytometry-based analysis to detect JNK and p38 activation. Using human primary lymphocytes and Jurkat CD4(+) T cells stimulated with PMA/ionomycin, we demonstrate activation (phosphorylation) of JNK and p38, which is further confirmed by two additional established techniques (WB and confocal microscopy). Flow cytometry analysis is shown to be more sensitive than WB to detect JNK and p38 activation, which can be quantitated and enables us to study their activation within cell populations.  相似文献   

18.
Primary human fibroblasts have a finite replicative lifespan in culture that culminates in a unique state of growth arrest, termed senescence that is accompanied by distinct morphological and biochemical alterations. Senescent cell responses to extracellular stimuli are believed to be altered at a point after receptors are bound by ligand, leading to improper integration of the signals which initiate DNA replication. In this study we demonstrate that one of the key organizing membrane microdomains for receptor signaling, caveolae, are absent in senescent cells. A comparison of young and senescent cells indicated that senescent cells contained a higher total amount of caveolins 1 and 2 but had significantly less of both proteins in the caveolar fraction. Additionally, caveolar fractions from senescent cells completely lacked the tyrosine-kinase activity associated with functional caveolae. Furthermore, old cells had little caveolar protein exposed to the outer plasma membrane as estimated by using an in vivo biotinylation assay and no detectable caveolin 1 on the cell surface when processed for immunofluoresence and confocal microscopy. Together, these data suggest that a fundamental loss of signal integration at the plasma membrane of senescent cells is due to the loss of signaling competent caveolae.  相似文献   

19.
In addition to their role in cellular bioenergetics, mitochondria also initiate common forms of programmed cell death (apoptosis) through the release of proteins such as cytochrome c from the intermembrane and intracristal spaces. The release of these proteins is studied in populations of cells by western blotting mitochondrial and cytoplasmic fractions of cellular extracts, and in single cells by fluorescence microscopy using fluorescent indicators and fusion proteins. However, studying the changes in ultrastructure associated with release of proteins requires the higher resolution provided by transmission electron microscopy. Here, we have used fluorescence microscopy to characterize the state of apoptosis in HeLa cells treated with etoposide followed by electron microscopy and three-dimensional electron microscope tomography of the identical cells to study the sequence of structural changes. We have identified a remodelling of the inner mitochondrial membrane into many separate vesicular matrix compartments that accompanies release of proteins; however, this remodelling is not required for efficient release of cytochrome c. Swelling occurs only late in apoptosis after release of cytochrome c and loss of the mitochondrial membrane potential.  相似文献   

20.
By adapting a laser scanning microscope with a titanium sapphire femtosecond pulsed laser and transmission optics, we are able to produce live cell images based on the nonlinear optical phenomenon of second harmonic generation (SHG). Second harmonic imaging (SHIM) is an ideal method for probing membranes of living cells because it offers the high resolution of nonlinear optical microscopy with the potential for near-total avoidance of photobleaching and phototoxicity. The technique has been implemented on three cell lines labeled with membrane-staining dyes that have large nonlinear optical coefficients. The images can be obtained within physiologically relevant time scales. Both achiral and chiral dyes were used to compare image formation for the case of single- and double-leaflet staining, and it was found that chirality plays a significant role in the mechanism of contrast generation. It is also shown that SHIM is highly sensitive to membrane potential, with a depolarization of 25 mV resulting in an approximately twofold loss of signal intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号