首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis   总被引:2,自引:0,他引:2  
Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation. In the first process, the single interphase centrosome duplicates in a tightly regulated manner so that two centrosomes are present in mitosis. In the second process, the two centrosomes increase in size and microtubule nucleation capacity through PCM recruitment, a process referred to as centrosome maturation. Failure to properly orchestrate centrosome duplication and maturation is inevitably linked to spindle defects, which can result in aneuploidy and promote cancer progression. It has been proposed that centriole assembly during duplication relies on both PCM and centriole proteins, raising the possibility that centriole duplication depends on PCM recruitment. In support of this model, C. elegans SPD-2 and mammalian NEDD-1 (GCP-WD) are key regulators of both these processes. SPD-2 protein sequence homologs have been identified in flies, mice, and humans, but their roles in centrosome biogenesis until now have remained unclear. Here, we show that Cep192, the human homolog of C. elegans and D. melanogaster SPD-2, is a major regulator of PCM recruitment, centrosome maturation, and centriole duplication in mammalian cells. We propose a model in which Cep192 and Pericentrin are mutually dependent for their localization to mitotic centrosomes during centrosome maturation. Both proteins are then required for NEDD-1 recruitment and the subsequent assembly of gamma-TuRCs and other factors into fully functional centrosomes.  相似文献   

2.
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.  相似文献   

3.
Syndecan-syntenin-ALIX regulates the biogenesis of exosomes   总被引:2,自引:0,他引:2  
The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan-syntenin-ALIX in membrane transport and signalling processes.  相似文献   

4.
Stomatin-like protein 2 (SLP-2) is a widely expressed mitochondrial inner membrane protein of unknown function. Here we show that human SLP-2 interacts with prohibitin-1 and -2 and binds to the mitochondrial membrane phospholipid cardiolipin. Upregulation of SLP-2 expression increases cardiolipin content and the formation of metabolically active mitochondrial membranes and induces mitochondrial biogenesis. In human T lymphocytes, these events correlate with increased complex I and II activities, increased intracellular ATP stores, and increased resistance to apoptosis through the intrinsic pathway, ultimately enhancing cellular responses. We propose that the function of SLP-2 is to recruit prohibitins to cardiolipin to form cardiolipin-enriched microdomains in which electron transport complexes are optimally assembled. Likely through the prohibitin functional interactome, SLP-2 then regulates mitochondrial biogenesis and function.  相似文献   

5.
The AAA protein p97 requires adaptor-like cofactors for its numerous cellular functions. In this issue of Developmental Cell, Uchiyama et al. (2006) identify p37 as a p97 adaptor that is required constitutively for ER and Golgi membrane fusion, analogous to the mitotic membrane fusion role of the adaptor p47. Their study suggests that related p97 adaptors involved in similar cellular pathways can be subject to differential regulation.  相似文献   

6.
The cilium both releases and binds to extracellular vesicles (EVs). EVs may be used by cells as a form of intercellular communication and mediate a broad range of physiological and pathological processes. The mammalian polycystins (PCs) localize to cilia, as well as to urinary EVs released from renal epithelial cells. PC ciliary trafficking defects may be an underlying cause of autosomal dominant polycystic kidney disease (PKD), and ciliary–EV interactions have been proposed to play a central role in the biology of PKD. In Caenorhabditis elegans and mammals, PC1 and PC2 act in the same genetic pathway, act in a sensory capacity, localize to cilia, and are contained in secreted EVs, suggesting ancient conservation. However, the relationship between cilia and EVs and the mechanisms generating PC-containing EVs remain an enigma. In a forward genetic screen for regulators of C. elegans PKD-2 ciliary localization, we identified CIL-7, a myristoylated protein that regulates EV biogenesis. Loss of CIL-7 results in male mating behavioral defects, excessive accumulation of EVs in the lumen of the cephalic sensory organ, and failure to release PKD-2::GFP-containing EVs to the environment. Fatty acylation, such as myristoylation and palmitoylation, targets proteins to cilia and flagella. The CIL-7 myristoylation motif is essential for CIL-7 function and for targeting CIL-7 to EVs. C. elegans is a powerful model with which to study ciliary EV biogenesis in vivo and identify cis-targeting motifs such as myristoylation that are necessary for EV–cargo association and function.  相似文献   

7.
Autophagy is an evolutionarily conserved lysosome-based degradation process.Atg5 plays a very important role in autophagosome formation.Here we show that Atg5 is required for biogenesis of late endosomes and lysosomes in an autophagy-independent manner.In Atg5 cells,but not in other essential autophagy genes defecting cells,recycling and retrieval of late endosomal components from hybrid organelles are impaired,causing persistent hybrid organelles and defective formation of late endosomes and lysosomes.Defective retrieval of late endosomal components from hybrid organelles resulting from impaired recruitment of a component of V1-ATPase to acidic organelles blocks the pH-dependent retrieval of late endosomal components from hybrid organelles.Lowering the intracellular pH restores late endosome/lysosome biogenesis in Atg5 cells.Our data demonstrate an unexpected role of Atg5 and shed new light on late endosome and lysosome biogenesis.  相似文献   

8.
Myosin VI has been implicated in various steps of organelle dynamics. However, the molecular mechanism by which this myosin contributes to membrane traffic is poorly understood. Here, we report that myosin VI is associated with a lysosome-related organelle, the melanosome. Using an actin-based motility assay and video microscopy, we observed that myosin VI does not contribute to melanosome movements. Myosin VI expression regulates instead the organization of actin networks in the cytoplasm. Using a cell-free assay, we showed that myosin VI recruited actin at the surface of isolated melanosomes. Myosin VI is involved in the endocytic-recycling pathway, and this pathway contributes to the transport of a melanogenic enzyme to maturing melanosomes. We showed that depletion of myosin VI accumulated a melanogenic enzyme in enlarged melanosomes and increased their melanin content. We confirmed the requirement of myosin VI to regulate melanosome biogenesis by analysing the morphology of melanosomes in choroid cells from of the Snell's waltzer mice that do not express myosin VI. Together, our results provide new evidence that myosin VI regulates the organization of actin dynamics at the surface of a specialized organelle and unravel a novel function of this myosin in regulating the biogenesis of this organelle.  相似文献   

9.
Defects in closure of embryonic tissues such as the neural tube, body wall, face and eye lead to severe birth defects. Cell adhesion is hypothesized to contribute to closure of the neural tube and body wall; however, potential molecular regulators of this process have not been identified. Here we identify an ENU-induced mutation in mice that reveals a molecular pathway of embryonic closure. Line2F homozygous mutant embryos fail to close the neural tube, body wall, face, and optic fissure, and they also display defects in lung and heart development. Using a new technology of genomic sequence capture and high-throughput sequencing of a 2.5 Mb region of the mouse genome, we discovered a mutation in the grainyhead-like 2 gene (Grhl2). Microarray analysis revealed Grhl2 affects the expression of a battery of genes involved in cell adhesion and E-cadherin protein is drastically reduced in tissues that require Grhl2 function. The tissue closure defects in Grhl2 mutants are similar to that of AP-2α null mutants and AP-2α has been shown to bind to the promoter of E-cadherin. Therefore, we tested for a possible interaction between these genes. However, we find that Grhl2 and AP-2α do not regulate each other's expression, E-cadherin expression is normal in AP-2α mutants during neural tube closure, and Grhl2;AP-2α trans-heterozygous embryos are morphologically normal. Taken together, our studies point to a complex regulation of neural tube fusion and highlight the importance of comparisons between these two models to understand more fully the molecular pathways of embryonic tissue closure.  相似文献   

10.
11.
NOVA SCOTIA     
《CMAJ》1927,17(1):131-132
  相似文献   

12.
NOVA SCOTIA     
《CMAJ》1927,17(2):260-261
  相似文献   

13.
Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent role in the biogenesis of the canalicular membrane, reflected by its ability to sort and redistribute apical and basolateral sphingolipids. Here we show that SAC appears to be a crucial target for a cytokine-induced signal transduction pathway, which stimulates membrane transport exiting from this compartment promoting apical membrane biogenesis. Thus, oncostatin M, an IL-6-type cytokine, stimulates membrane polarity development in HepG2 cells via the gp130 receptor unit, which activates a protein kinase A-dependent and sphingomyelin-marked membrane transport pathway from SAC to the apical membrane. To exert its signal transducing function, gp130 is recruited into detergent-resistant membrane microdomains at the basolateral membrane. These data provide a clue for a molecular mechanism that couples the biogenesis of an apical plasma membrane domain to the regulation of intracellular transport in response to an extracellular, basolaterally localized stimulus.  相似文献   

14.
NOVA SCOTIA     
《CMAJ》1927,17(3):373-374
  相似文献   

15.
Shroom family proteins have been implicated in the control of the actin cytoskeleton, but so far only a single family member has been studied in the context of developing embryos. Here, we show that the Shroom-family protein, Shroom2 (previously known as APXL) is both necessary and sufficient to govern the localization of pigment granules at the apical surface of epithelial cells. In Xenopus embryos that lack Shroom2 function, we observed defects in pigmentation of the eye that stem from failure of melanosomes to mature and to associate with the apical cell surface. Ectopic expression of Shroom2 in na?ve epithelial cells facilitates apical pigment accumulation, and this activity specifically requires the Rab27a GTPase. Most interestingly, we find that Shroom2, like Shroom3 (previously called Shroom), is sufficient to induce a dramatic apical accumulation of the microtubule-nucleating protein gamma-tubulin at the apical surfaces of na?ve epithelial cells. Together, our data identify Shroom2 as a central regulator of RPE pigmentation, and suggest that, despite their diverse biological roles, Shroom family proteins share a common activity. Finally, because the locus encoding human SHROOM2 lies within the critical region for two distinct forms of ocular albinism, it is possible that SHROOM2 mutations may be a contributing factor in these human visual system disorders.  相似文献   

16.
The in vivo significance of microtubule severing and the mechanisms governing its spatial regulation are not well understood. In Tetrahymena, a cell type with elaborate microtubule arrays, we engineered null mutations in subunits of the microtubule-severing complex, katanin. We show that katanin activity is essential. The net effect of katanin on the polymer mass depends on the microtubule type and location. Although katanin reduces the polymer mass and destabilizes the internal network of microtubules, its activity increases the mass of ciliary microtubules. We also show that katanin reduces the levels of several types of post-translational modifications on tubulin of internal and cortical microtubules. Furthermore, katanin deficiencies phenocopy a mutation of beta-tubulin that prevents deposition of polymodifications (glutamylation and glycylation) on microtubules. We propose that katanin preferentially severs older, post-translationally modified segments of microtubules.  相似文献   

17.
Neural stem cells (NSCs) persist in the dentate gyrus of the hippocampus into adulthood and are essential for both neurogenesis and neural circuit integration. Exosomes have also been shown to play vital roles in regulating biological processes of receptor cells as a medium for cell-to-cell communication signaling molecules. The precise molecular mechanisms of exosome-mediated signaling, however, remain largely unknown. Here, we found that exosomes produced by denervated hippocampi following fimbria–fornix transection could promote the differentiation of hippocampal neural precursor cells into cholinergic neurons in coculture with NSCs. Furthermore, we found that 14 circular RNAs (circRNAs) were upregulated in hippocampal exosomes after fimbria–fornix transection using high-throughput RNA-Seq technology. We further characterized the function and mechanism by which the upregulated circRNA Acbd6 (acyl-CoA-binding domain–containing 6) promoted the differentiation of NSCs into cholinergic neurons using RT–quantitative PCR, Western blot, ELISA, flow cytometry, immunohistochemistry, and immunofluorescence assay. By luciferase reporter assay, we demonstrated that circAcbd6 functioned as an endogenous miR-320-5p sponge to inhibit miR-320-5p activity, resulting in increased oxysterol-binding protein–related protein 2 expression with subsequent facilitation of NSC differentiation. Taken together, our results suggest that circAcbd6 promotes differentiation of NSCs into cholinergic neurons via miR-320-5p/oxysterol-binding protein–related protein 2 axis, which contribute important insights to our understanding of how circRNAs regulate neurogenesis.  相似文献   

18.
19.
MiR-206 was involved in a series of cellular activities, such as the growth and development of skeletal muscle and the tumorigenesis. MiR-206 was characterized previously as a differentially expressed gene in sodium arsenite (SA)-induced neural tube defects (NTDs) in chick embryos via miRNA microarray analysis. However, the role of miR-206 in the pathological process of nerve cells remained elusive. In this study we found differential expression of miR-206 in SA-treated chick embryos by Northern blot analysis. Ectopic expression of miR-206 inhibited cell proliferation, and promoted cell apoptosis in U343 and SK-N-SH cell by using MTT, Edu Apollo assay and Flow cytometry analysis. Further investigation revealed that miR-206 can interact with 3'-untranslated region (UTR) of Otx2. MiR-206 mimics down-regulated the endogeneous Otx2 expression, whereas the miR-206 inhibitor obviously up-regulated the expression of Otx2. These findings indicate that overexpression of miR-206 promotes cell apoptosis and low expression of miR-206 inhibits cell apoptosis. Otx2 may play an important role in the process of miR-206-mediated cell apoptosis.  相似文献   

20.
NOVA ET VETERA     
《BMJ (Clinical research ed.)》1905,2(2342):1354-1355
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号