共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The GATA family (vertebrates and invertebrates) 总被引:39,自引:0,他引:39
Over the past year, vertebrate GATA factors have been found to participate directly in several signal-transduction pathways. Smad3, phosphorylated by TGF-beta signalling, interacts with GATA3 to induce differentiation of T helper cells. Hypertrophic stimuli act through RhoA GTPase and ROCK kinase to activate GATA4 in cardiac myocytes. In the liver, GATA4 is elevated by BMP and FGF signalling, and is able to bind to chromatin targets. Invertebrate GATA factors play a central role in specifying the mesendoderm. 相似文献
7.
GATA transcription factors and cardiac development. 总被引:16,自引:0,他引:16
8.
Michael K. Skinner Alan Rawls Jeanne Wilson-Rawls Eric H. Roalson 《Differentiation; research in biological diversity》2010
A phylogenetic analysis of the basic helix-loop-helix (bHLH) gene superfamily was performed using seven different species (human, mouse, rat, worm, fly, yeast, and plant Arabidopsis) and involving over 600 bHLH genes ( Stevens et al., 2008). All bHLH genes were identified in the genomes of the various species, including expressed sequence tags, and the entire coding sequence was used in the analysis. Nearly 15% of the gene family has been updated or added since the original publication. A super-tree involving six clades and all structural relationships was established and is now presented for four of the species. The wealth of functional data available for members of the bHLH gene superfamily provides us with the opportunity to use this exhaustive phylogenetic tree to predict potential functions of uncharacterized members of the family. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique elements of the evolution and functional relationships of the different genes in the bHLH gene family. 相似文献
9.
10.
The Argonaute proteins are recently identified and evolutionarily conserved family with two subfamilies Ago and Piwi, which play important roles in small RNA pathways. Most species have eight Argonaute members in their genomes, ranging from 1 to 27. Here we report identification of six Argonaute genes in pig, four members of the Ago subfamily (Ago1, Ago2, Ago3 and Ago4) and two members of the Piwi subfamily (Piwil1 and Piwil2), which were predicted to encode proteins of 857, 860, 860, 861, 861 and 985 amino acids, respectively. Phylogenetic analysis showed that the porcine Ago and Piwi genes were clustered into relevant branch of mammalian Argonaute members. The porcine Ago4- Ago1-Ago3 genes are linked together at the p12 of the chromosome 6, while Ago2 is located at the p15 of the chromosome 4. The porcine Piwil1 and Piwil2 are mapped together onto the chromosome 14, at the q14 and q11 respectively. Comparatively mapping of the Argonaute members on chromosomes showed that linkage group of the Ago4-Ago1-Ago3 and several neighborhood genes is evolutionarily conserved from chicken to mammals. The genes Piwil1 and Piwil2 are separated onto different chromosomes from fish to mammals, with exception to this tendency in both pig and stickleback, indicating an opposite tendency of recombination together or non-disjunction of these two genes during speciation. Further expression analysis showed an ubiquitous expression pattern of Ago members, oppositely a restricted expression pattern in gonads of the Piwi members, suggesting distinct potential roles of the porcine Argonaute genes. 相似文献
11.
12.
13.
We studied synteny conservation between 18 yeast species and 13 vertebrate species in order to provide a comparative analysis of the chromosomal plasticity in these 2 phyla. By computing the regions of conserved synteny between all pairwise combinations of species within each group, we show that in vertebrates, the number of conserved synteny blocks exponentially increases along with the divergence between orthologous protein and that concomitantly; the number of genes per block exponentially decreases. The same trends are found in yeasts but only when the mean protein divergence between orthologs remains below 36%. When the average protein divergence exceeds this threshold, the total number of recognizable synteny blocks gradually decreases due to the repeated accumulation of rearrangements. We also show that rearrangement rates are on average 3-fold higher in vertebrates than in yeasts, and are estimated to be of 2 rearrangements/Myr. However, the genome sizes being on average 200 times larger in vertebrates than in yeasts, the normalized rates of chromosome rearrangements (per Mb) are about 50-fold higher in yeast than in vertebrate genomes. 相似文献
14.
15.
ZhanSB HeQY 《Cell research》2001,11(4):301-310
16.
17.
The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo 总被引:16,自引:0,他引:16
Liang Q De Windt LJ Witt SA Kimball TR Markham BE Molkentin JD 《The Journal of biological chemistry》2001,276(32):30245-30253
18.
Afouda BA Martin J Liu F Ciau-Uitz A Patient R Hoppler S 《Development (Cambridge, England)》2008,135(19):3185-3190
19.
Using the zebrafish model to study GATA transcription factors 总被引:4,自引:0,他引:4