首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As the most widespread seagrass in temperate waters of the Northern Hemisphere, Zostera marina provides a unique opportunity to investigate the extent to which the historical legacy of the last glacial maximum (LGM18 000-10 000 years bp) is detectable in modern population genetic structure. We used sequences from the nuclear rDNA-internal transcribed spacer (ITS) and chloroplast matK-intron, and nine microsatellite loci to survey 49 populations (> 2000 individuals) from throughout the species' range. Minimal sequence variation between Pacific and Atlantic populations combined with biogeographical groupings derived from the microsatellite data, suggest that the trans-Arctic connection is currently open. The east Pacific and west Atlantic are more connected than either is to the east Atlantic. Allelic richness was almost two-fold higher in the Pacific. Populations from putative Atlantic refugia now represent the southern edges of the distribution and are not genetically diverse. Unexpectedly, the highest allelic diversity was observed in the North Sea-Wadden Sea-southwest Baltic region. Except for the Mediterranean and Black Seas, significant isolation-by-distance was found from ~150 to 5000 km. A transition from weak to strong isolation-by-distance occurred at ~150 km among northern European populations suggesting this scale as the natural limit for dispersal within the metapopulation. Links between historical and contemporary processes are discussed in terms of the projected effects of climate change on coastal marine plants. The identification of a high genetic diversity hotspot in Northern Europe provides a basis for restoration decisions.  相似文献   

2.
海草生物量和初级生产力研究进展   总被引:3,自引:0,他引:3  
海草床是近岸重要的湿地生态系统,具有较高生物量和生产力。海草的生物量和生产力变化除了受到光照、无机碳源、营养盐、温度、盐度、水动力条件、铁限制和污染物等非生物因素制约外,还受到附生藻类和动物摄食等生物因素影响。非生物因素一般有最适合海草生长的范围,生物因素的影响具有两面性。海草生物量和生产力研究基本处于由定性向定量过渡阶段,准确便捷的方法、现场多因子围隔实验、更大时空尺度上的对比研究是今后研究的重点。  相似文献   

3.
In the pure stand of tropical seagrass,Syringodium isoetifolium, in a small oceanic island, Fiji, grazing effects of the seagrass-associated gammarid,Ampithoe sp., on seagrass and epiphytes were assessed in October 1989, November 1991, November 1992. Density of the gammarid was estimated with two methods, mesh bag method and tuft method. During the three years surveyed the density of the gammarid increased remarkably from 1989 to 1991, with heavy epiphytism. Gut contents of the gammarid were examined. Grazing rates on seagrass leaf with and without epiphytic blue-green algae were measured in a bottle experiment. Litter bag experiments were conducted using different mesh sizes each containing seagrass only and seagrass and gammarids. The seagrass leaf biomass in the litter bag reduced abruptly in both bags. After one week, 78–86% of seagrass biomass disappeared from the bags. Enhancement of decomposition of seagrass leaf by the gammarid grazing was observed. Oxygen consumption and ammonium excretion rates were measured simultaneously in bottle experiments. Carbon budget in the seagrass bed was estimated as follows: 0.9 gC m−2 day−1 in seagrass growth, gammarid grazing was about a half of it and further assimilated a half of it, about 0.1 gC m−2 day−1, and more than half of it become CO2 by respiration. Grazing effects on epiphyte and seagrass growth and production were discussed through the carbon budget and indirect interactions between seagrass, epiphytes and associated gammarids to explain the temporal change of seagrass and epiphyte dynamics.  相似文献   

4.
Cells of Phaeodactylum tricornutum were precultured under axenic conditions in a full medium and then exposed to natural light conditions at various depths in the eutrophic lake „Meerfelder Maar”︁ (Eifel, FRG) for several days. After exposition the cells were characterized with respect to growth parameters, photosynthetic performance and xanthophyll cycle pigments. In order to test the resistance of the cells grown at different depths against photostress, the cells were illuminated with photoinhibitory light. The variable chlorophyll a-fluorescence and the oxygen quantum yield at a non-saturating light intensity were simultaneously measured after photostress and subsequent recovery. The xanthophyll cycle pigments and the content in α-tocopherol were monitored during photostress to get molecular information about the physiological reasons of light-stress resistance. The data give evidence that cells grown close to the surface show a faster decline in photosynthetic performance and a more efficient recovery than cells from lower depths. There is clear indication that under natural conditions when the light is fluctuating between optimal, sub- and supraoptimal intensities the photostress resistance is much higher than under conditions of the absence of light stress. The molecular basis for light stress resistance seems to be the pool size and the conversion kinetics of the xanthophyll cycle pigments and the capacity of the oxygen-scavenging system. The effect of in-situ light adaptation is discussed with respect to the assessment of the potential of the primary production.  相似文献   

5.
This study experimentally examined influences of environmental variables on the activities of key enzymes involved in carbon and nitrogen metabolism of the submersed marine angiosperm, Zostera marina L. Nitrate reductase activity in leaf tissue was correlated with both water-column nitrate concentrations and leaf sucrose levels. Under elevated nitrate, shoot nitrate reductase activity increased in both light and dark periods if carbohydrate reserves were available. When water-column nitrate was low, glutamine synthetase activity in leaf tissue increased with environmental ammonium. In contrast, glutamine synthetase activity in belowground tissues was statistically related to both nitrate and temperature. At the optimal growth temperature for this species (ca. 25 °C), increased water-column nitrate promoted an increase in glutamine synthetase activity of belowground tissues. As temperatures diverged from the optimum, this nitrate effect on glutamine synthetase was no longer evident. Activities of both sucrose synthase and sucrose-P synthase were directly correlated with temperature. Sucrose-P synthase activity also was correlated with salinity, and sucrose synthase activity was statistically related to tissue ammonium. Overall, the enzymatic responses that were observed indicate a tight coupling between carbon and nitrogen metabolism that is strongly influenced by prevailing environmental conditions, especially temperature, salinity, and environmental nutrient levels.  相似文献   

6.
The macrophytes Fucus serratus and Zostera marina form similar substrates for associated flora and fauna in shallow waters in Norway. While F. serratus forms a more or less continuous belt on rocky substrate along the coast, Z. marina forms disjunct populations on sandy or muddy bottoms. This study focused on the organisms associated with these two macrophytes in two localities in the Skagerrak region. In total, 130 taxa of epiphytic organisms were identified: 22 green algae, 41 red algae, 32 brown algae, eight diatoms and 27 sessile animals. One hundred and twenty-seven taxa of mobile macrofauna were registered. The dominant group was crustaceans, with amphipods as the order containing most species. Many species of both plants and animals preferred one or the other habitat. It is concluded that coastal macrophyte systems have high species diversity.  相似文献   

7.
The rhizosphere sediments of seagrasses are generally a site of intense nitrogen fixation activity and this can provide a significant source of "new" nitrogen for the growth of the plants. In this paper, I review the data concerning nitrogen fixation in seagrass ecosystems, the transfer of the fixed nitrogen from the bacteria to the plants and its contribution to the overall productivity of seagrasses in different climatic zones.
The relationship between the plants and diazotrophic heterotrophic bacteria in the rhizosphere is discussed, particularly focusing on the potentially important role of nitrogen-fixing, sulphate-reducing bacteria. The regulation of nitrogen fixation rates in the rhizosphere by photosynthetically driven oxygen and fixed carbon release by the plant roots and rhizomes, and the availability of ammonium in the porewater, is assessed. Finally, the hypothesis that a mutualistic or symbiotic association exists between the seagrasses and heterotrophic nitrogen fixers in the rhizosphere, based on the mutual exchange of fixed carbon and nitrogen, is discussed.  相似文献   

8.
贝克喜盐草( Halophila beccarii)是当前全球面临灭绝风险的10种海草之一,被国际自然保护联盟( IUCN)列为易危( VL)种。由于贝克喜盐草生境的特殊性(受涨退潮影响的潮间带)及个体十分纤小且易被沉积物覆盖,加之种群更新速率极快,导致通常难以被发现。据报道,贝克喜盐草仅在我国的广西、广东、台湾、香港、福建和海南6个省(区)有小面积的分布。该研究首次报道了位于海南东寨港的贝克喜盐草海草的分布、群落基本特征以及生境概况。结果表明:与国内其它地区的贝克喜盐草相比,调查期间东寨港的贝克喜盐草面积较大,为15.4 hm2;密度适中,为(10394±576)茎.m-2;覆盖度较低,为~5%;生物量较低,总生物量仅(9.224±1.151) gDW.m-2,地上生物量为(2.339±0.245) gDW.m-2,地下为(6.886±1.055) gDW.m-2,地上与地下生物量之比值较低(0.34);叶片较小,叶长为(4.83±0.87) mm,叶宽为(1.44±0.21) mm,调查时在植物体上未发现有花或果,但在沉积物中发现有一定数量的贝克喜盐草种子(2105±664)粒.m-2。该研究区的海水受到一定程度的水体污染。建议海南东寨港国家级自然保护区在今后的管理工作中,应把海草也作为重点保护对象。  相似文献   

9.
鳗草在北半球温带海域广有分布,受到不同程度的人为干扰和环境胁迫,海草床面积急剧退化.为探讨鳗草对不同环境胁迫的适应性,于2014年11月—2015年10月对荣成天鹅湖草床的潮间带和潮下带的斑块区、鳗草草场边缘和鳗草草场内部4个生境的鳗草形态和繁殖能力进行了研究.结果表明: 叶长、叶宽、节间长度/直径、地上生物量/地下生物量和分枝频率在不同月份和生境间差异显著,其中除了分枝频率最大值出现在草场边缘(88.4%)外,其他各项指标的最大值均出现在草场内部(分别为78.54 cm、7.93 mm、7.03和3.88).地上生物量/地下生物量的可塑性指数在各站位均较高(0.77~0.92),叶宽的可塑性(0.41~0.64)略小.不同生境中单株鳗草佛焰苞数差异不显著,而单位面积的佛焰苞数差异显著,在草场内部偏向于克隆生殖,而在人为干扰较大的斑块区倾向于有性生殖.  相似文献   

10.
11.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

12.
The current distribution of the introduced seagrass Zostera japonica is restricted to the mid- to upper intertidal zone in the coastal Pacific Northwest region of North America. The climate in this region is cool and wet, becoming hotter and dryer with increasing distance southward. Since temperature is likely to be an important factor affecting distribution of this species, growth of two populations located near the northern and southern limits of its established range along the Pacific Coast of North America were measured in an experimental setting across a range of temperatures typical of those in the field during the growing season (10, 20, and 30 °C). The effects of temperature and population were both significant. Leaf elongation, growth, and areal productivity rates of the northern population were consistently lower than those of the southern population. Across the range of temperatures, mean leaf elongation rates ranged from 0.47 to 1.40 cm2 shoot−1 d−1; mean growth rates ranged from 0.19 to 0.52 mg dry wt shoot−1 d−1. Mean areal productivity ranged from 0.54 to 1.92 g dry wt m−2 d−1. Maximum rates of leaf elongation, growth, and areal productivity for both populations were observed at 20 °C. However, leaf elongation, growth, and areal productivity of the northern population declined markedly at 30 °C, whereas no comparable declines were observed for the southern population. This suggests that Z. japonica populations near the southern limits of its established range may be better adapted to warmer temperatures than populations near the northern range limits and further range extensions southward along the California coast may be likely. These differences could be important in predicting the outcome of competitive interactions between native and introduced seagrass species, and in determining future patterns of distribution and zonation of Pacific Coast seagrasses.  相似文献   

13.
The biomass of epiphytes and seagrasses has been measured in relation to leaf age in three monospecific seagrass stands of Thalassia hemprichii (Ehrenb.) Aschers. in Papua New Guinea. From June 1981 through August 1982, biomass values for epiphytes at the three sites ranged from 5 to 70 g ADW m−2 sediment surface at site 1, from 5 to 14 g ADW m−2 at site 2, and from 3.5 to 7.0 g ADW m−2 at the site 3. Annual mean epiphyte biomass values for the different sites were 1.3 g ADW m−2 leaf surface at site 1, 1.7 g ADW m−2 leaf surface at site 2, and 1.5 g ADW m−2 leaf surface at site 3.

The annual mean standing crop of T. hemprichii leaves was highest at site 1 (103 g ADW m−2. Values for site 2 and site 3 were 60 g ADW m−2 and 41 g ADW m−2, respectively.

Production of epiphytes was calculated in three different ways: firstly, by using biomass values for each specific leaf-age group, with corrections for colonization; secondly, by fitting the biomass values with a specific growth curve; and thirdly, by estimated the rate of biomass accumulation. On an area basis, production of epiphytes on leaves of T. hemprichii ranged from 0.55 to 3.97 g ADW m−2 day−1 at site 1, from 0.17 to 0.73 g ADW m−2 day−1 at site 2, and from 0.24 to 0.68 g ADW m−2 day−1 at site 3.  相似文献   


14.
15.
Observations of ecosystem net carbon dioxide exchange obtained with eddy covariance techniques over a 4‐year period at spruce, beech and pine forest sites were used to derive time series data for gross primary production (GPP) and ecosystem respiration (Reco). A detailed canopy gas exchange model (PROXELNEE) was inverted at half‐hour time step to estimate seasonal changes in carboxylation capacity and light utilization efficiency of the forest canopies. The parameter estimates were then used further to develop a time‐dependent modifier of physiological activity in the daily time step gas exchange model of Chen et al. (1999) , previously used for regional simulations in BOREAS. The daily model was run under a variety of assumptions and the results emphasize the need in future analyses: (1) to focus on time‐dependent seasonal changes in canopy physiology as well as in leaf area index, (2) to compare time courses of physiological change in different habitats in terms of recognizable cardinal points in the seasonal course, and (3) to develop methods for utilizing information on seasonal changes in physiology in regional and continental carbon budget simulations. The results suggest that the daily model with appropriate seasonal adjustments for physiological process regulation should be an efficient tool for use in conjunction with remote sensing for regional evaluation of global change scenarios.  相似文献   

16.
Macroalgae are important primary producers in many subtidal habitats, yet little information exists on the temporal and spatial dynamics of net primary production (NPP) by entire subtidal assemblages. This knowledge gap reflects the logistical challenges in measuring NPP of diverse macroalgal assemblages in shallow marine habitats. Here, we couple a simple primary production model with nondestructive estimates of taxon‐specific biomass on subtidal reefs off Santa Barbara, California to produce a 4‐year time series of net primary production by intact assemblages of understory macroalgae in giant kelp forests off Santa Barbara, California, USA. Daily bottom irradiance varied significantly throughout the year, and algal assemblages were on average exposed to saturating irradiance for only 1.3–4.5 h per day, depending on the time of year. Despite these variable light‐limiting conditions, biomass rather than irradiance explained the vast majority of variation observed in daily NPP at all times of the year. Measurements of peak biomass in spring and summer proved to be good predictors of NPP for the entire year, explaining as much as 76% of the observed variation. In contrast, bottom irradiance was a poor predictor of NPP, explaining <10% of the variation in NPP when analyzed seasonally and ~2% when evaluated annually. Our finding that annual NPP by macroalgal assemblages can be predicted from a single, nondestructive measurement of biomass should prove useful for developing time series data that are necessary to evaluate natural and anthropogenic changes in NPP by one of the world's most productive ecosystems.  相似文献   

17.
Abstract Net primary production (NPP) and nutrient dynamics of grasslands are regulated by different biotic and abiotic factors, which may differentially affect functional plant groups. Most studies have dealt with grasslands that have extremely low or zero production over a significant period of the year. Here we explore the relative importance of a few environmental factors as controls of aerial and below‐ground plant biomass production and nutrient dynamics in a grassland that is active throughout the year. We investigate their effect on the response of three main plant functional groups (warm‐ and cool‐season graminoids and forbs). We conducted a factorial experiment in a continuously grazed site in the Flooding Pampa grassland (Argentina). Factors were seasons (summer, autumn, winter and spring), and environmental agents (mowing, shade, addition of phosphorus [P] and nitrogen [N]). N addition had the largest and most extended impact: it tripled aerial NPP in spring and summer but had no effect on below‐ground biomass. This positive effect was accompanied by higher N acquisition and higher soil N availability. Mowing increased aerial NPP in winter, increased root biomass in the first 10 cm during autumn and winter and promoted N and P uptake by plants. Shading did not affect aerial NPP, but stimulated N and P uptake by plants. P addition had no effect on aerial NPP, but increased shallow root biomass and its N content in spring, and tripled P accumulation in plant biomass. The three plant functional groups differentially accounted for these ecosystem‐level responses. Graminoids explained the greater biomass production of N‐fertilized plots and mowing tended to promote forbs. These results suggest that the environmental controls of aerial NPP in this grassland vary among seasons, differentially impact the major floristic groups, and affect the energy and nutrient transfer to herbivores.  相似文献   

18.
A selective chemical photosynthesis inhibitor, DCMU (Dichorophenyl-dimethylurea), dissolved in DMSO (Dimethyl sulfoxide) was substituted for the dark incubation method commonly used to measure the oxygen consumption in metabolic and primary production studies. We compared oxygen fluxes during light incubations with DCMU and dark incubations procedure, on soft bottom benthos. For this purpose, we studied the effects of different DCMU concentrations. A concentration of 5 · 10–5 mol l–1 inside a clear incubation enclosure completely inhibits photosynthesis without affecting the metabolism of soft bottom benthos.  相似文献   

19.
Sphagnum palustre L. is one of the few Sphagnum species distributed in the warm‐temperate zone. To elucidate the mechanisms that enable S. palustre to maintain its productivity under warm climatic conditions, we examined the temperature conditions and photosynthetic characteristics of this species in a lowland wetland in western Japan. Moss temperatures during the daytime were much lower than the air temperature, particularly during summer. The optimum temperature for the net photosynthetic rate was approximately 20°C, irrespective of the season, but summer and autumn samples maintained high rates at higher temperatures as well. The net photosynthetic rate at near light saturation was much higher during summer–autumn than during spring–winter. A model estimation in which net production was calculated from the photosynthetic characteristics and microclimatic data showed that both the low temperature of the moss colony and the seasonal shift in photosynthetic characteristics are among the mechanisms that enable this species to maintain its productivity under warm climatic conditions.  相似文献   

20.
Previous studies have shown that most leaf production (>90%) of the seagrass Posidonia oceanica is shed after senescence and that a substantial percentage (up to 80%) may thereafter be exported off the seagrass meadows by waves and currents. It has also been reported that P. oceanica meadows can accumulate large stocks of belowground detritus due to slow decomposition rates. However, the generality of these results across broad spatial scales is poorly known. In this report, we examine the fate of leaf production and the magnitude and dynamics of belowground detritus in 16 P. oceanica meadows distributed along the Spanish Mediterranean. Herbivores removed a small percentage of leaf production in all the meadows (≤13%), with most leaf production (>85%) being shed after senescence. Most shed leaves (>90%) were exported off the meadows by physical agents, such as waves and currents. The amount of belowground detritus stored within 10–15 cm from the sediment surface varied from ca. 70 to 7500 g DW m−2 among the meadows examined, and they accumulated at rates ranging from ca. 65 to 650 g DW m−2 per year. These values are large when compared to other communities of aquatic and terrestrial macrophytes. Our results show that P. oceanica meadows in the Spanish Mediterranean support high values of secondary production in other systems by exporting large amounts of leaf detritus as well as acting as substantial carbon sinks by accumulating large reservoirs of belowground detritus. Therefore, the increasing anthropogenic threats on P. oceanica could entail an important loss of secondary production and carbon storage in Mediterranean coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号