首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations at residue 244 (Ambler numbering system) in the class A TEM beta-lactamase confer resistance to inactivation by beta-lactamase inhibitors and result in diminished turnover of beta-lactam substrates. The Arg244Ser mutant of the OHIO-1 beta-lactamase, an SHV family enzyme, demonstrates variable susceptibilities to beta-lactamase inhibitors and has significantly reduced catalytic efficiency. The minimum inhibitory concentrations (MICs) for Escherichia coli DH5alpha expressing the Arg244Ser beta-lactamase were reduced when compared to the strain bearing the OHIO-1 beta-lactamase: ampicillin, 512 vs. 8192 micrograms ml-1; cephaloridine, 4 vs. 32 micrograms ml-1, respectively. The MICs for the beta-lactam beta-lactamase inhibitor combinations demonstrated resistance only to ampicillin-clavulanate, 16/8 vs. 8/4 micrograms ml-1 respectively. In contrast, there was increased susceptibility to ampicillin-sulbactam, ampicillin-tazobactam, and piperacillin-tazobactam. When compared to the OHIO-1 beta-lactamase homogenous preparations of the Arg244Ser beta-lactamase enzyme demonstrated increased Km and decreased kcat values for benzylpenicillin (Km=17 vs. 50 microM, kcat=345 vs. 234 s-1) and cephaloridine (Km=97 vs. 202 microM, kcat=1023 vs. 202 s-1). Although the Ki and IC50 values were increased for each inhibitor when compared to OHIO-1 beta-lactamase, the turnover numbers (tn) required for inactivation were increased only for clavulanate. For the Arg244Ser mutant enzyme of OHIO-1, the increased Ki, decreased tn for the sulfones, and different partition ratio (kcat/kinact) support the notion that not all class A enzymes are inactivated in the same manner, and that certain class A beta-lactamase enzymes may react differently with identical substitutions in structurally conserved amino acids. The resistance phenotype of a specific mutations can vary depending on the enzyme.  相似文献   

2.
Primary amines functionally replace lysine 258 by catalyzing both the 1,3-prototropic shift and external aldimine hydrolysis reactions with the inactive aspartate aminotransferase mutant K258A. This finding allows classical Brønsted analyses of proton transfer reactions to be applied to enzyme-catalyzed reactions. An earlier study of the reaction of K258A with cysteine sulfinate (Toney, M.D. & Kirsch, J.F., 1989, Science 243, 1485) provided a beta value of 0.4 for the 1,3-prototropic shift. The beta value reported here for the transamination of oxalacetate to aspartate is 0.6. The catalytic efficacy of primary amines is largely determined by basicity and molecular volume. The dependence of the rate constants for the reactions of K258A and K258M on amine molecular volume is nearly identical. This observation argues that the alkyl groups of the added amines do not occupy the position of the lysine 258 side chain in the wild type enzyme. Large primary C alpha and insignificant solvent deuterium kinetic isotope effects with amino acid substrates demonstrate that the amine nitrogen of the exogenous catalysts directly abstracts the labile proton in the rate-determining step.  相似文献   

3.
4.
Summary We have studied the relationship between purine salvage enzymes, 6-mercaptopurine resistance, and the purR phenotype in E. coli. Mutants resistant to 6-mercaptopurine were found to have defects in HPRT, the purR repressor, or in both. Analysis of these mutants led to the isolation of a hypoxanthine phosphoribosyl transferase-guanine phosphoribosyl transferase double mutant (hpt - gpt-) that is extremely sensitive to adenine. Two classes of adenine resistant mutants were isolated from this strain. The first class was deficient in APRT (apt -) while the second class represented purine regulatory mutants (purR -). There is thus selection for the purR phenotype in a hpt - gpt-background.Abbreviations FGAR formyl glycinamide ribotide - HPRT hypoxanthine phosphoribosyl transferase - GPRT guanine phosphoribosyl transferase - APRT adenine phosphoribosyl transferase - PRPP 5 phosphoribosyl-1 pyrophosphate - 6MP 6-mercaptopurine - FA 2-fluoroadenine  相似文献   

5.
Electrospray mass spectrometry was used to directly observe intact acyl enzyme complexes formed between a class C beta-lactamase (from Enterobacter cloacae P99) and four poor substrates/inhibitors. In each case the molecular weight difference between the unreacted and the reacted beta-lactamase was consistent with the formation of an acyl enzyme.  相似文献   

6.
Glasner ME  Bergman NH  Bartel DP 《Biochemistry》2002,41(25):8103-8112
The class I ligase, a ribozyme previously isolated from random sequence, catalyzes a reaction similar to RNA polymerization, positioning its 5'-nucleotide via a Watson-Crick base pair, forming a 3',5'-phosphodiester bond between its 5'-nucleotide and the substrate, and releasing pyrophosphate. Like most ribozymes, it requires metal ions for structure and catalysis. Here, we report the ionic requirements of this self-ligating ribozyme. The ligase requires at least five Mg(2+) for activity and has a [Mg(2+)](1/2) of 70-100 mM. It has an unusual specificity for Mg(2+); there is only marginal activity in Mn(2+) and no detectable activity in Ca(2+), Sr(2+), Ba(2+), Zn(2+), Co(2+), Cd(2+), Pb(2+), Co(NH(3))(6)(3+), or spermine. All tested cations other than Mg(2+), including Mn(2+), inhibit the ribozyme. Hill analysis in the presence of inhibitory cations suggested that Ca(2+) and Co(NH(3))(6)(3+) inhibit by binding at least two sites, but they appear to productively fill a subset of the required sites. Inhibition is not the result of a significant structural change, since the ribozyme assumes a nativelike structure when folded in the presence of Ca(2+) or Co(NH(3))(6)(3+), as observed by hydroxyl-radical mapping. As further support for a nativelike fold in Ca(2+), ribozyme that has been prefolded in Ca(2+) can carry out the self-ligation very quickly upon the addition of Mg(2+). Ligation rates of the prefolded ribozyme were directly measured and proceed at 800 min(-1) at pH 9.0.  相似文献   

7.
Since direct analysis of many aspects of spliceosomal function is greatly hindered by the daunting complexity of the spliceosome, the development of functionally validated simple model systems can be of great value. The critical role played by a base-paired complex of U6 and U2 snRNAs in splicing in vivo suggests that this complex could be a suitable starting point for the development of such a simple model system. However, several criteria must be satisfied before such a snRNA-based in vitro system can be considered a valid model for the spliceosomal catalytic core, including similarities at the level of reaction chemistry and cationic and sequence requirements. Previous functional analyses of in vitro assembled base-paired complexes of human U2 and U6 snRNAs have been promising, providing insight into catalysis. Furthermore, they strongly suggest that with further optimization, these RNAs might indeed be able to recapitulate the function of the spliceosomal catalytic core, thus opening the door to several lines of study not previously possible.  相似文献   

8.
A mutant BamHI endonuclease, E77K, belongs to a class of catalytic mutants that bind DNA efficiently but cleave DNA at a rate more than 10(3)-fold lower than that of the wild-type enzyme (S. Y. Xu and I. Schildkraut, J. Biol. Chem. 266:4425-4429, 1991). The preferred cofactor for the wild-type BamHI is Mg2+. BamHI is 10-fold less active with Mn2+ as the cofactor. In contrast, the E77K variant displays an increased activity when Mn2+ is substituted for Mg2+ in the reaction buffer. Mutations that partially suppress the E77K mutation were isolated by using an Escherichia coli indicator strain containing the dinD::lacZ fusion. These pseudorevertant endonucleases induce E. coli SOS response (as evidenced by blue colony formation) and thus presumably nick or cleave chromosomal DNA in vivo. Consistent with the in vivo result, the pseudorevertant endonucleases in the crude cell extract display site-specific partial DNA cleavage activity. DNA sequencing revealed two unique suppressing mutations that were located within two amino acid residues of the original mutation. Both pseudorevertant proteins were purified and shown to increase specific activity at least 50-fold. Like the wild-type enzyme, both pseudorevertant endonucleases prefer Mg2+ as the cofactor. Thus, the second-site mutation not only restores partial cleavage activity but also suppresses the metal preference as well. These results suggest that the Glu-77 residue may play a role in metal ion binding or in enzyme activation (allosteric transition) following sequence-specific recognition.  相似文献   

9.
A mutant form of Escherichia coli aspartate transcarbamoylase (ATCase) which lacks catalytic activity has been purified and characterized (Wall, K.A., Flatgaard, J.E., Gibbons, I., and Schachman, H.K. (1979) J. Biol. Chem 254, 11910-11916). Peptide mapping of the mutant and wild type catalytic chains followed by the determination of the amino acid sequence of the one altered peptide in the mutant indicated that a glycyl residue was replaced by aspartic acid. This substitution is located at position 125 in the tentative sequence kindly provided by W. Konigsberg (personal communication). The mutant protein has an overall secondary structure similar to that of the wild type as indicated by circular dichroism spectroscopy. However, marked changes in the reactivity of several amino acid residues were demonstrated. Lysyl residue 84 which in the wild type subunits reacts specifically with pyridoxal 5'-phosphate is only slightly reactive in the mutant even though the peptide containing that residue was not altered in amino acid composition. Another residue, cysteinyl 46, which is thought to be in the active site, is much more reactive toward p-hydroxymercuribenzoate in the mutant subunit than in the wild type protein. Finally, tyrosyl residue 213, which according to recent crystallographic studies is not near the active site and which exhibits an unusually low pK (9.1) in the wild type catalytic subunits, appears to have its pK shifted to 10.5 or higher as a result of the mutation. The evidence indicates that the substitution of an aspartyl for a glycyl residue at a region of the amino acid sequence remote from those residues in the active site causes sufficient modification of the tertiary structure to cause the loss of enzyme activity and to affect the reactivity of other residues in the protein. Moreover, the quaternary structure of the intact enzyme is altered as well since the subunit interactions are greatly weakened.  相似文献   

10.
Two single mutants and the corresponding double mutant of beta-lactamase I from Bacillus cereus 569/H were constructed and their kinetics investigated. The mutants have Lys-73 replaced by arginine (K73R), or Glu-166 replaced by aspartic acid (E166D), or both (K73R + E166D). All four rate constants in the acyl-enzyme mechanism were determined for the E166D mutant by the methods described by Christensen, Martin & Waley [(1990) Biochem. J. 266, 853-861]. Both the rate constants for acylation and deacylation for the hydrolysis of benzylpenicillin were decreased about 2000-fold in this mutant. In the K73R mutant, and in the double mutant, the rate constants for acylation were decreased about 100-fold and 10,000-fold respectively. All three mutants also had lowered values for the rate constants for the formation and dissociation of the non-covalent enzyme-substrate complex. The specificities of the mutants did not differ greatly from those of wild-type beta-lactamase, but the hydrolysis of cephalosporin C by the K73R mutant gave 'burst' kinetics.  相似文献   

11.
Two highly conserved lysyl residues have been replaced with an arginine to examine their role in the mechanism of l-aspartase from Escherichia coli. Replacement of an active-site lysine results in a significant loss of catalytic efficiency [A. S. Saribas, J. F. Schindler, and R. E. Viola (1994) J. Biol. Chem. 269, 6313-6319], while replacement of the second lysine leads to a completely inactive and insoluble protein. Fluorescence spectral evidence has suggested that the loss of activity is due to the misfolding of this aspartase mutant. Some catalytic activity is recovered when the mutant is treated with varying levels of denaturants, and extended treatment with high levels of guanidine.HCl results in the recovery of a substantial fraction of the wild-type activity from this inactive mutant. However, upon removal of the denaturant this mutant enzyme slowly reverts to its inactive and insoluble form. Treatment with an artificial chaperone system in which solubilization by detergent is followed by its removal with beta-cyclodextrin leads to a stable enzyme under nondenaturing conditions with about half the catalytic activity of the wild-type enzyme. These results confirm a structural role for lysine-55 in l-aspartase and demonstrate that additional characterization is required before conclusions can be drawn from the production of an inactive mutant.  相似文献   

12.
13.
14.
Although there are varying estimates as to the degree of enzyme hydration required for activity, a threshold value of ca. 0.2 g of water per gram of protein has been widely accepted. The evidence upon which this is based is reviewed here. In particular, results from the use of gas-phase substrates are discussed. Results using solid-phase enzyme-substrate mixtures are not altogether in accord with those obtained using gas-phase substrates. The use of gaseous substrates and products provides an experimental system in which the hydration of the enzyme can be easily controlled, but which is not limited by diffusion. All the results show that increasing hydration enhances activity. The results using gas-phase substrates do not support the existence of a critical hydration value below which enzymatic activity is absent, and suggest that enzyme activity is possible at much lower hydrations than previously thought; they do not support the notion that significant hydration of the surface polar groups is required for activity. However, the marked improvement of activity as hydration is increased suggests that water does play a role, perhaps in optimizing the structure or facilitating the flexibility required for maximal activity.  相似文献   

15.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

16.
17.
Application of a modified immunofluorescence technique using an anti-kinetochore serum enables cytogeneticists to obtain quality metaphase spreads and to localize kinetochores. In a patient with a 45, XX, -9, -11, tdic (9p;11p) constitution, we found that the dicentric marker chromosome has an intensely fluorescent kinetochore (no. 11), the functional centromere, and a less intensely fluorescent kinetochore (no. 9), the inactive centromere. The data suggest that in the process of tandem fusion (telomere-telomere between 11p and 9p), the centromere of chromosome 9 was not deleted, but, rather, inactivated.  相似文献   

18.
Using site-directed mutagenesis, a double mutant in yeast cytochrome c peroxidase (CCP) has been constructed where the proximal ligand, His175, has been converted to glutamine and the neighboring Trp191 has been converted to phenylalanine. The refined 2.4-A crystal structure of the double mutant shows that the Gln175 side chain is within coordination distance of the heme iron atom and that Phe191 occupies the same position as Trp191 in the native enzyme with very little rearrangement outside the immediate vicinity of the mutations. Consistent with earlier work, we find that the single mutant, His175-->Gln, is fully active under steady state assay conditions and that as reported earlier (Mauro et al., 1988), the Trp191-->Phe mutant exhibits only < 0.05% activity. However, the double mutant, His175-->Gln/Phe191-->Phe, exhibits 20% wild type activity. Since it is known that the Trp191-->Phe mutant is inactive because it can no longer transfer electrons from ferrocytochrome c, changing the nature of the proximal ligand is able to restore this activity. These results raise interesting questions regarding the mechanism of interprotein electron transfer reactions.  相似文献   

19.
The use of mutants and transgenic plants to study amino acid metabolism   总被引:7,自引:0,他引:7  
Mutants of higher plants with alterations in amino acid metabolism have now been available for 20 years. Following the realization that at least four distinct classes of herbicides (phosphinothricins, glyphosates, imidazolinones and sulphonylureas) act by the inhibition of amino acid biosynthesis, mutants resistant to the herbicides have also been obtained. More recently, transgenic plants containing altered levels of enzymes of amino acid biosynthesis have been constructed. In this article, we have attempted to review several areas of amino acid biosynthesis including ammonia assimilation, the aspartate pathway, branched chain amino acids, aromatic amino acids and proline.  相似文献   

20.
T20, a synthetic peptide corresponding to a C-terminal segment of the envelope glycoprotein (gp41) of human and simian immunodeficiency viruses, is a potent inhibitor of viral infection. We report here that C-terminal octylation of simian immunodeficiency virus gp41-derived T20 induces a significant increase in its inhibitory potency. Furthermore, when C-terminally octylated, an otherwise inactive mutant in which the C-terminal residues GNWF were replaced by ANAA has potency similar to that of the wild type T20. This effect cannot be explained by a trivial inhibitory effect of the octyl group added to the peptides, because the N-terminally octylated peptides have the same activity as the non-octylated parent peptides. The effects caused by octylation on the oligomerization, secondary structure, and membrane-interaction properties of the peptides were investigated. Our results shed light on the mechanism of inhibition by T20 and provide experimental support for the existence of a pre-hairpin intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号