共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, S-allyl cysteine sulfoxide (SACS) was used to evaluate its preventive effect in isoproterenol (ISO)-induced myocardial ischemia in male Wistar rats. Rats were pretreated with SACS (40 and 80 mg kg(-1)) orally for 5 weeks. After the treatment period, ISO (150 mg kg(-1)) was administered subcutaneously to rats at an interval of 24 h for 2 days. The activities of beta-D-N-acetyl-glucosaminidase, beta-galactosidase, beta-glucosidase, and acid phosphatase increased in serum and heart in ISO-induced rats. In addition, these rats showed a significant (p < 0.05) increase in the activities of beta-glucuronidase and cathepsin-D in serum and heart and a significant (p < 0.05) decrease in their activities in lysosomal fraction of the heart. The activity of Na(+)K(+)-ATPase declined, while those of Ca(2+)- and Mg(2+)-ATPases significantly (p < 0.05) elevated in the heart of ISO-induced rats. Pretreatment with SACS (40 and 80 mg kg(-1)) showed a significant (p < 0.05) effect in all the biochemical parameters studied. The effect at a dose of 80 mg kg(-1) body weight was more effective than that at 40 mg kg(-1) body weight and brought back all the biochemical parameters to near normal levels. Hereby, our study shows the membrane-stabilizing as well as antioxidant effects of SACS in ISO-induced rats. 相似文献
2.
Rajadurai M Stanely Mainzen Prince P 《Journal of biochemical and molecular toxicology》2006,20(4):191-197
This study was designed to evaluate the preventive effect of naringin in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Rats were pretreated with naringin (10, 20, and 40 mg/kg body weight) orally for a period of 56 days. After the treatment period, ISO (85 mg/kg body weight) was administered subcutaneously to rats at an interval of 24 h for 2 days. There was a significant increase in the levels of total, ester, and free cholesterol, triglycerides (TG), and free fatty acids (FFA) in serum and heart and decrease in heart phospholipids (PL) in ISO-induced rats. Altered levels of lipoproteins and activities of 3-hydroxy-3-methylglutaryl-Coenzyme reductase A in liver and heart, lecithin cholesterol acyl transferase and lipoprotein lipase in plasma were also observed in ISO-induced rats. Pretreatment with naringin (10, 20, and 40 mg/kg) for a period of 56 days significantly decreased the levels of total, ester, and free cholesterol, TG, FFA in serum and heart and increased PL in heart. It also minimized the alterations in serum lipoproteins and lipid metabolic enzymes in ISO-induced rats. Thus, naringin has a lipid-lowering effect in ISO-induced MI rats. 相似文献
3.
《Redox report : communications in free radical research》2013,18(1):14-21
AbstractAltered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats. 相似文献
4.
K. Senthil Kumaran P. Stanely Mainzen Prince 《Journal of biochemical and molecular toxicology》2010,24(2):115-122
We evaluated the preventive effect of caffeic acid (CA) on lysosomal enzymes in isoproterenol (ISO)‐treated myocardial infarcted rats. Male albino Wistar rats were pretreated with CA (15 mg/kg) daily for a period of 10 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. The activity of serum creatine kinase‐MB and lactate dehydrogenase was increased significantly (P < 0.05) in ISO‐induced myocardial infarcted rats. The levels of plasma thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P < 0.05) increased, and the level of plasma‐reduced glutathione was significantly (P < 0.05) decreased in ISO‐induced myocardial infarcted rats. The activities of lysosomal enzymes (β‐glucuronidase, β‐N‐acetylglucosaminidase, β‐galactosidase, cathepsin‐B and cathepsin‐D) were increased significantly (P < 0.05) in the serum and heart of ISO‐induced myocardial infarcted rats. ISO induction also resulted in decreased stability of membranes, which was reflected by lowered activities of β‐glucuronidase and cathepsin‐D in different fractions except cytosol. Pretreatment with CA (15 mg/kg) to ISO‐treated rats significantly (P < 0.05) prevented the changes in the activities of cardiac marker enzymes, the levels of lipid peroxidation products, reduced glutathione and the activities of lysosomal enzymes in the serum, heart, and subcellular fractions. Oral treatment with CA (15 mg/kg) to normal control rats did not show any significant effect. Thus, the results of our study showed that CA prevented the lysosomal membrane damage against ISO‐induced myocardial infarction. The observed effects of CA are due to membrane‐stabilizing, antilipo peroxidative, and antioxidant effects. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:115–122, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20319 相似文献
5.
The present study was designed to evaluate the preventive role of rutin on lipids, lipoproteins, and ATPases in normal and isoproterenol (ISO)-induced myocardial infarction in rats. Rutin (40 and 80 mg/kg) was orally administered to rats for a period of 42 days. After that period, isoproterenol (150 mg/kg) was injected subcutaneously to male wistar rats at an interval of 24 h for 2 days. The weight of heart and the concentrations of total cholesterol, triglycerides, and free fatty acids were increased significantly (p < 0.05), and the concentration of phospholipids was decreased significantly (p < 0.05) in the heart of ISO-treated rats. ISO-treated rats also showed a significant increase (p < 0.05) in the levels of total cholesterol, triglycerides, phospholipids, low-density lipoprotein cholesterol (LDL-C), and very low-density lipoprotein cholesterol (VLDL-C) with a significant decrease (p < 0.05) in high-density lipoprotein cholesterol (HDL-C) level in serum. The activities of sodium potassium dependent adenosine triphosphatase (Na(+)/K(+) ATPase) and magnesium-dependent adenosine triphosphatase (Mg(2+) ATPase) were decreased significantly (p < 0.05), and the activity of calcium-dependent adenosine triphosphatase (Ca(2+)ATPase) was increased significantly (p < 0.05) in the heart in ISO-treated rats. Pretreatment with rutin at doses of 40 or 80 mg/kg to ISO-treated rats showed a significant (p < 0.05) effect in all the parameters studied. Oral administration of rutin to normal rats did not show any significant effect. Thus, the results of our study show that pretreatment with rutin maintained the levels of lipids, lipoproteins, and ATPases in ISO-induced myocardial infarcted rats. The observed effects might be due to the antioxidant potential of rutin. 相似文献
6.
Althaf Hussain Shaik Nayab Rasool Shaik Abdul Kareem Mohammed Suliman Yousef Al Omar Altaf Mohammad Talal Abdulaziz Mohaya Lakshmi Devi Kodidhela 《Saudi Journal of Biological Sciences》2018,25(3):431-436
The present study aimed to evaluate the effect of Terminalia pallida fruit ethanolic extract (TpFE) on lipids, lipoproteins, lipid metabolism marker enzymes and paraoxonase (PON) in isoproterenol (ISO)-induced myocardial infarcted rats. PON is an excellent serum antioxidant enzyme which involves in the protection of low density lipoprotein cholesterol (LDL-C) from the process of oxidation for the prevention of cardiovascular diseases. ISO caused a significant increase in the concentration of total cholesterol, triglycerides, LDL-C, very low density lipoprotein cholesterol and lipid peroxidation whereas significant decrease in the concentration of high density lipoprotein cholesterol. ISO administration also significantly decreased the activities of lecithin cholesterol acyl transferase, PON and lipoprotein lipase whereas significantly increased the activity of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Oral pretreatment of TpFE at doses 100, 300 and 500?mg/kg body weight (bw) and gallic acid (15?mg/kg bw) for 30?days challenged with concurrent injection of ISO (85?mg/kg bw) on 29th and 30th day significantly attenuated these alterations and restored the levels of lipids, lipoproteins and the activities of lipid metabolizing enzymes. Also TpFE significantly elevated the serum antioxidant enzyme PON. This is the first report revealed that pretreatment with TPFE ameliorated lipid metabolic marker enzymes and increased the antioxidant PON in ISO treated male albino Wistar rats. 相似文献
7.
Nagoor Meeran MF Mainzen Prince PS 《Journal of biochemical and molecular toxicology》2011,25(3):151-157
The present study was designed to evaluate the preventive effects of N-acetyl cysteine on lipid peroxide metabolism in isoproterenol (ISO) induced myocardial infarcted rats. Male albino Wistar rats were pretreated with N-acetyl cysteine (5 and 10 mg/kg) daily for a period of 14 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. Increased activities of serum creatine kinase, creatine kinase-MB, lactate dehydrogenase, and increased intensities of serum lactate dehydrogenase-isoenzyme bands (LDH-1, LDH-2) were observed in ISO-induced rats. The heart lipid peroxidation products were significantly increased, and the antioxidant system was significantly reduced in ISO-induced rats. Pretreatment with N-acetyl cysteine (5 and 10 mg/kg) to ISO-induced rats showed significant effects on all the biochemical parameters studied. Histopathological findings of the myocardium also showed the protective role of N-acetyl cysteine in ISO-induced rats. Furthermore, in vitro study confirmed the potent-free radical scavenging activity of N-acetyl cysteine. The effect at a dose of 10 mg/kg of N-acetyl cysteine was more pronounced than the dose, 5 mg/kg. The results of our study show that N-acetyl cysteine protects the heart against ISO-induced myocardial infarction by its free radical scavenging effect. 相似文献
8.
Dietary flavonoids intake has been reported inversely related to the incidence of cardiovascular diseases (CVD). The present study is undertaken to evaluate the preventive role of naringin on mitochondrial enzymes in isoproterenol (ISO)-induced myocardial infarction in male albino Wistar rats. Rats subcutaneously injected with ISO (85 mg/kg) at an interval of 24 h for 2 days, resulting in significant (p < 0.05) increase in the levels of mitochondrial lipid peroxides. ISO-induction also showed significant (p < 0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase). Oral pretreatment with naringin (10, 20, and 40 mg/kg) to ISO-induced rats daily for a period of 56 days significantly (p < 0.05) minimized the alterations in all the biochemical parameters and restored the normal mitochondrial function. Transmission electron microscopic (TEM) observations also correlated with these biochemical findings. Thus, our findings demonstrate that naringin prevents the mitochondrial dysfunction during ISO-induced myocardial infarction in rats. 相似文献
9.
This study was aimed to evaluate the preventive role of S-allylcysteine (SAC) on mitochondrial and lysosomal enzymes in isoproterenol (ISO)-induced rats. Male albino Wistar rats were pretreated with SAC (50, 100 and 150 mg/kg) daily for a period of 45 days. After the treatment period, ISO (150 mg/kg) was subcutaneously injected to rats at an interval of 24 h for two days. The activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome C oxidase) were decreased significantly (p<0.05) in ISO-induced rats. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetyl glucosaminidase, beta-galactosidase, cathepsin-D and acid phosphatase) were increased significantly (p<0.05) in serum and heart of ISO-induced rats. Pretreatment with SAC (100 mg/kg and 150 mg/kg) for a period of 45 days increased significantly (p<0.05) the activities of mitochondrial and respiratory chain enzymes and decreased the activities of lysosomal enzymes significantly (p<0.05) in ISO-induced rats. Oral administration of SAC (50, 100 and 150 mg/kg) for a period of 45 days to normal rats did not show any significant (p<0.05) effect in all the parameters studied. The altered electrocardiogram (ECG) of ISO-treated rats was also restored to near normal by treatment with SAC (100 and 150 mg/kg). These results confirm the efficacy of SAC in alleviating ISO-induced cardiac damage. 相似文献
10.
P. T. Devika P. Stanely Mainzen Prince 《Journal of biochemical and molecular toxicology》2009,23(6):387-393
This article reports data on the preventive effect of (?)epigallocatechin gallate (EGCG) on lipid metabolism and lipoproteins in isoproterenol (ISO)‐induced myocardial infarction (MI) in Wistar rats. The rats were induced MI by ISO (100 mg/kg) at an interval of 24 h for 2 days. EGCG (30 mg/kg) was given to rats as pretreatment for 21 days orally using an intragastric tube. EGCG significantly reduced the increased serum levels of cholesterol, triglycerides, and free fatty acids in the heart and serum phospholipids (PLs) in ISO‐treated rats. It also significantly increased the reduced levels of heart PLs in ISO‐induced rats. EGCG reduced the levels of serum low‐density lipoprotein cholesterol and very low‐density lipoprotein cholesterol and increased serum high‐density lipoprotein (HDL)‐cholesterol in ISO‐treated rats. It also reduced the increased cholesterol/PL ratio and atherogenic index and significantly increased the reduced ratio of HDL‐cholesterol/total cholesterol. Also EGCG significantly increased the reduced activity of lecithin cholesterol acyl transferase in ISO‐treated rats. Thus, EGCG prevented the accumulation of lipids and altered the levels of lipoproteins in myocardial‐infarcted rats. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:387–393, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20302 相似文献
11.
Our study evaluates the preventive effect of S-allyl cysteine sulfoxide (SACS) on lipid peroxidative products and enzymic and nonenzymic antioxidants in isoproterenol (ISO) induced myocardial infarction in rats. The male Wistar rats were rendered myocardial infarction by ISO (150 mg kg(-1), once a day for two days). The concentrations of thiobarbituric acid reactive substances and lipid hydroperoxides were increased in hearts from ISO-treated rats, whereas the content of enzymic and nonenzymic antioxidants were declined in rats administered ISO. Oral pretreatment with SACS (40 mg kg(-1) and 80 mg kg(-1) daily for a period of 35 days) significantly (p < 0.05) decreased the lipid peroxidative products and significantly (p < 0.05) increased antioxidants in ISO-induced rats. Oral administration of SACS (40 mg kg(-1) and 80 mg kg(-1)) did not show any significant effect in normal rats. Thus, the present study shows that SACS exhibits antilipoperoxidative and antioxidant effects in experimental myocardial infarction. 相似文献
12.
MF Nagoor Meeran P Stanely Mainzen Prince 《Journal of biochemical and molecular toxicology》2012,26(9):368-373
This study evaluates the protective effects of thymol on altered plasma lipid peroxidation products and nonenzymic antioxidants in isoproterenol (ISO)‐induced myocardial infarcted rats. Male albino Wistar rats were pre and cotreated with thymol (7.5 mg/kg body weight) daily for 7 days. ISO (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce myocardial infarction (MI). Increased activity/levels of serum creatine kinase‐MB (CK‐MB), plasma thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes with decreased levels of plasma reduced glutathione (GSH), vitamin C, and vitamin E were observed in ISO‐induced myocardial infarcted rats. Pre and cotreatment with thymol (7.5 mg/kg body weight) showed normalized activity of serum CK‐MB and near normalized levels of plasma lipid peroxidation products, reduced GSH, vitamin C, and vitamin E in myocardial infarcted rats. Furthermore, the in vitro study on reducing power of thymol confirmed its potent antioxidant action. Thus, thymol protects ISO‐induced MI in rats by its antilipid peroxidation and antioxidant properties. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:368–373, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21431 相似文献
13.
Senthil Kumaran K Stanely Mainzen Prince P 《Journal of biochemical and molecular toxicology》2011,25(2):60-67
The present study aims to evaluate the protective effects of caffeic acid on isoproterenol-treated myocardial infarction. Male albino Wistar rats were pretreated with caffeic acid (15 mg/kg) daily for 10 days. After the pretreatment, rats were injected with isoproterenol (100 mg/kg) at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-treated rats showed increased intensity of lactate dehydrogenase-1 and 2 isoenzyme bands and elevated ST segments. The activity of the heart sodium potassium adenosine triphosphatase was decreased, and the activities of the heart magnesium adenosine triphosphatase and calcium adenosine triphosphatase were increased in isoproterenol-treated rats. Isoproterenol-treated rats also showed a significant increase in the concentration of heart calcium. Furthermore, it significantly increased the counts of red blood cells, hemoglobin, white blood cells, and neutrophils and decreased significantly the concentration of erythrocyte sedimentation rate and the counts of lymphocytes and eosinophils. Pretreatment with caffeic acid showed protective effects on all the biochemical parameters, hematology and minimized alterations in lactate dehydrogenase isoenzymes and electrocardiogram. In vitro study confirmed the free radical scavenging potential of caffeic acid. The observed effects might be due to the free radical scavenging and membrane-stabilizing property of caffeic acid. 相似文献
14.
The subcutaneous administration of 1 mg/kg tetrabenazine, once daily for 5 days, which depletes the catecholamine stores in the brain, significantly inhibits in rats the acquisition of a two-way conditioned avoidance reflex in the shuttle box. Enhancer substances, the tryptamine-derived selective and highly potent enhancer, R-(-)-1-(benzofuran-2-yl)-2-propylaminopentane HCl [(-)-BPAP] (0.05-10 mg/kg), the beta-phenylethylamine (PEA)-derived enhancer, (-)-deprenyl (1-5 mg/kg) and the (-)-deprenyl analogue, free of MAO-B inhibitory potency, (-)-1-phenyl-2-propylaminopentane HCl [(-)-PPAP], (1-5 mg/kg), antagonize in a dose-dependent manner the inhibition of learning caused by tetrabenazine. 1-(Benzofuran 2 yl)-2-(3,3,3-trifluoropropyl)aminopentane HCl [3 F BPAP], a newly synthetized analogue of (-)-BPAP with low specific activity, significantly antagonized the enhancer effect of (-)-BPAP but left the effect of (-)-deprenyl and (-)-PPAP unchanged. This is the first proof for a difference in the mechanism of action between a PEA-derived enhancer substance and its tryptamine-derived peer. 相似文献
15.
The cardioprotective property of ellagic acid in rats has been reported previously. The present study reveals the protective role of ellagic acid in biochemical parameters including serum iron, plasma iron binding capacity, uric acid, glycoprotein, and electrolytes along with hematological parameters. Rats were subcutaneously injected with isoproterenol (ISO) (100 mg/kg) for 2 days to induce myocardial infarction. ISO-induced rats showed a significant increase in their levels of serum iron, serum uric acid, and blood glucose, and a significant decrease in their levels of plasma iron binding capacity, serum total protein, albumin/globulin ratio, and heart glycogen, when compared with normal control rats. The altered hematological parameters were also observed in ISO-induced rats when compared with normal control rats. Pretreatment with ellagic acid at doses of 7.5 and 15 mg/kg produced significant beneficial effect by returning all the above-mentioned biochemical and hematological parameters to near normal levels. 相似文献
16.
Increased oxidative stress and antioxidant deficit have been suggested to play a major role in isoproterenol-induced myocardial infarction. The present study was designed to evaluate the effect of alpha-mangostin on the antioxidant defense system and lipid peroxidation against isoproterenol-induced myocardial infarction in rats. Induction of rats with ISO (150 mg/kg body weight, ip) for 2 days resulted in a marked elevation in lipid peroxidation, serum marker enzymes (LDH, CPK, GOT, and GPT) and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GST, and GSH). Pre-treatment with alpha-mangostin (200 mg/kg of body weight per day) orally for 6 days prior to the ISO administration and 2 days along with ISO administration significantly attenuated these changes when compared to the individual treatment groups. These findings indicate the protective effect of alpha-mangostin on lipid peroxidation and antioxidant tissue defense system during ISO-induced myocardial infarction in rats. 相似文献
17.
P. Stanely Mainzen Prince 《Journal of biochemical and molecular toxicology》2012,26(12):516-521
The present study was aimed to evaluate the preventive effects of (–) epicatechin on alterations in the activities/levels of adenosine triphosphatases and minerals in isoproterenol‐induced myocardial infarcted rats. Male albino Wistar rats were pretreated with (–) epicatechin (20 mg/kg body weight) daily for a period of 21 days. After the pretreatment period, rats were induced myocardial infarction by isoproterenol (100 mg/kg body weight) on 22nd and 23rd day. The activity of sodium/potassium‐dependent adenosine triphosphatase was decreased, and the activities of calcium‐ and magnesium‐dependent adenosine triphosphatases were increased in the heart of isoproterenol‐induced myocardial infarcted rats. In addition, the concentrations of potassium were decreased and the concentrations of sodium and calcium were increased in the heart of isoproterenol‐induced rats. Elevated plasma lipid peroxidation was noted in isoproterenol‐induced rats. Prior treatment with (–) epicatechin significantly prevented the alterations in the activities and concentrations of adenosine triphosphatases, minerals, and plasma lipid peroxidation. The in vitro study confirmed the reducing property of (–) epicatechin. The observed effects in this study are attributed to the membrane‐stabilizing and antioxidant properties of (–) epicatechin. The findings of this study will be beneficial to prevent the occurrence of myocardial infarction. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:516‐521, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21461 相似文献
18.
Enhancer regulation is a new control mechanism in the brain [Knoll, J., 2003. Enhancer regulation/endogenous and synthetic enhancer compounds: a neurochemical concept of the innate and acquired drives. Neurochemical Research 28(8), 1275-1297]. Enhancer substances exert their effect in bi-modal form with a highly characteristic dose-dependency. Two bell-shaped concentration curves have been published. The one in ultra low concentration range (fM) specific form of enhancer regulation and the other at high concentration (100 microM) non-specific form of enhancer regulation. Catecholaminergic neurons proved to be enhancer-sensitive cells. Since rat PC12 cells and human brain endothelial cells (HBEC) work under catecholaminergic influence, it was reasonable to expect that both the specific and non-specific form of the enhancer regulation might be detectable in these cells. We tested this possibility on these cultured cells under normoxia and hypoxia-reoxygenation. After 1 h hypoxia produced by Argon gas and 0, 2, 4, and 20 h reoxygenation the cell loss was calculated by propidiumiodide assay and the cell activity was investigated by Alamar Blue assay colorimetric measurement. The percentages of living and necrotic cells were expressed after propidiumiodide staining. Broad scale concentrations of the two compounds (1 fM-100 microM) were added to the culture strait after the oxygen deprivation. (-)-BPAP and (-)-deprenyl, due to their enhancer effect, exerted a significant cytoprotective effect on both HBECs and PC12 cells. In harmony with Knoll's publications we were able to demonstrate by the aid of (-)-BPAP and (-)-deprenyl that both HBEC and PC12 are enhancer-sensitive cells. We detected the specific form of the enhancer regulation in the ultra low concentration range (fM-pM) and also the non-specific form of the enhancer regulation was visible (mM-microM). 相似文献
19.
R-(-)-1-(Benzofuran-2-yl)-2-propylaminopentane HCl, (-)-BPAP, the recently developed selective and much more potent catecholaminergic/serotoninergic enhancer (CAE/SAE) substance than (-)-deprenyl enhances the performance of midbrain neurons, both in vivo and ex vivo, in a characteristic complex manner, presenting one bell shape dose/concentration effect curve in the low nanomolar range and another at higher micromolar range. For example, 4.7 +/- 0.10 nmol/g wet weight noradrenaline was released within 20 min from the quickly removed locus coeruleus of saline treated rats. This amount was increased 30 min after the subcutaneous administration of 0.0005 mg/kg (-)-BPAP to 15.4 +/- 0.55 nmol/g (P < 0.001). However, following the injection of a hundred times higher, 0.05 mg/kg, dose of (-)-BPAP, the amount of noradrenaline (4.3 +/- 0.25 nmol/g) released from the locus coeruleus did not differ from the control value. In ex vivo experiments, when the isolated locus coeruleus was soaked in an organ bath containing (-)-BPAP, the release of noradrenaline was significantly enhanced from 10(-16) M concentration, reached a peak effect at 10(-13) M concentration, but 10(-10) M (-)-BPAP was ineffective. A significant enhancer effect was detected also in the high concentration range from 10(-8) M, the peak effect was reached at 10(-6) M concentration and 10(-5) M (-)-BPAP was ineffective. (-)-BPAP enhanced in the low concentration range the performance of dopaminergic and serotoninergic neurons with a peak effect at 10(-13) and 10(-12) M concentration, respectively. The results with (-)-BPAP, the highly specific artificial enhancer substance, suggest that (i) high and low affinity "enhancer" receptors may exist in the brain, and (ii) that they may be identified with the recently cloned family of the "trace amine" receptors, activated by beta-phenylethylamine and tryptamine, the prototypes of the endogenous enhancer substances. 相似文献
20.
Yiqun Tang Minhui WangXiaoyong Le Jianing MengLu Huang Peng YuJia Chen Ping Wu 《Phytomedicine》2011,18(12):1024-1030
Myocardial hypertrophy has been linked to the development of a variety of cardiovascular diseases, and is a risk factor for myocardial ischemia, arrhythmias, and sudden cardiac death. The objective of the present study was to evaluate the cardioprotective effects of Danshensu (DSS), a water-soluble active component of Danshen, on cardiac hypertrophy in rats. We are the first to report that DSS reversed Cx43 down-regulation in ventricular tissue. Cardiomyopathy in rats was produced using isoproterenol (Iso) treatment (2.5 mg/kg/d, s.c.) for seven days. DSS (3 and 10 mg/kg/d, i.p.) and Valsartan (Val) (10 mg/kg, i.g.) were administered on days 4-7 of Iso-treatment. Heart weight index, hemodynamic parameters, and ECG II parameters were monitored and recorded; protein expression of left ventricular connexin 43 (Cx43) and the activity of the redox system were assayed, and arrhythmias were produced using a coronary ligation/reperfusion procedure. The results demonstrated that DSS treatment significantly decreased heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW) ratios. The protective role of DSS against Iso-induced myocardial hypertrophy was further confirmed using ECG. The incidences of ventricular tachycardia and ventricular fibrillation (VT, VF) and arrhythmic scores were higher in the model group and were suppressed by DSS. DSS decreased the serum and myocardium levels of creatine kinase, lactate dehydrogenase, and malondialdehyde (CK, LDH, and MDA) and increased serum activity of superoxide dismutase (SOD) in a dose-dependent manner. Cx43 expression in the left ventricle was down-regulated, and there was significant oxidative stress in this model of cardiomyopathy. DSS reversed the down-regulated Cx43 protein levels and showed potent anti-oxidative activities and cellular protection. These data demonstrate that DSS can prevent cardiac I/R injury and improve cardiac function in a rat model of hypertrophy, the effects partially resulting from antioxidants and the protection from Cx43 expression. 相似文献