首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

2.
3.
4.
5.
The P transposable element family in Drosophila melanogaster is responsible for the syndrome of hybrid dysgenesis which includes chromosomal rearrangements, male recombination, high mutability and temperature sensitive agametic sterility (called gonadal dysgenesis sterility). P element activity is controlled by a complex regulation system, encoded by the elements themselves, which keeps their transposition rate low within the strain bearing P elements and limits copy number by genome. A second regulatory mechanism, which acts on the level of RNA processing, prevents P mobility to somatic cells. The oldest available strains, representing most major geographical regions of the world, exhibited no detectable hybridization to the P-element. In contrast, all recently collected natural populations that were tested carried P-element sequences. The available evidence is consistent with the hypothesis of a worldwide P-element invasion of D. melanogaster during the past 30 years. Timing and direction of the invasion are discussed. The lack of P-element in older strains of Drosophila melanogaster as well as in the species must closely related to Drosophila melanogaster, suggests that P entered the Drosophila melanogaster genome recently, probably by horizontal transfer from an other species. The analysis of P-element elsewhere in the genus Drosophila reveals that several more distantly related species carried transposable elements with sequences quite similar to P. The species with the best-matching P-element is D. willistoni. A P-element from this species was found to match all but one of the 2907 nucleotides of the Drosophila melanogaster P-element. The phylogenic distributions and the likely horizontal transfers of the two other Drosophila transposable elements are discussed.  相似文献   

6.
Urasaki A  Mito T  Noji S  Ueda R  Kawakami K 《Gene》2008,425(1-2):64-68
The Tol2 element is a transposon found from a genome of a vertebrate, a small teleost medaka fish. Tol2 encodes a gene for a transposase which is active in vertebrate animals so far tested; for instance, in fish, frog, chicken and mammals, and transgenesis methods using Tol2 have been developed in these model vertebrates. However, it has not been known whether Tol2 can transpose in animals other than vertebrates. Here we report transposition of Tol2 in an invertebrate Drosophila melanogaster. First, we injected a transposon donor plasmid containing a Tol2 construct and mRNA encoding the Tol2 transposase into Drosophila eggs, and found that the Tol2 construct could be excised from the plasmid. Second, we crossed the injected flies, raised the offspring, and found that the Tol2 construct was integrated into the genome of germ cells and transmitted to the next generation. Finally, we constructed a Tol2 construct containing the white gene and injected the transposon donor plasmid and the transposase mRNA into fertilized eggs from the white mutant. We analyzed their offspring, and found that G1 flies with wild type red eyes could be obtained from 35% of the injected fly. We cloned and sequenced 34 integration loci from these lines and showed that these insertions were indeed created through transposition and distributed throughout the genome. Our present study demonstrates that the medaka fish Tol2 transposable element does not require vertebrate-specific host factors for its transposition, and also provides a possibility that Tol2 may be used as a new genetic tool for transgenesis and genome analysis in Drosophila.  相似文献   

7.
8.
Kim YJ  Hice RH  O'Brochta DA  Atkinson PW 《Genetica》2011,139(8):985-997
We have conducted a structure and functional analysis of the hobo transposable element of Drosophila melanogaster. A minimum of 141 bp of the left (L) end and 65 bp of the right (R) end of the hobo were shown to contain sequences sufficient for transposition. Both ends of hobo contain multiple copies of the motifs GGGTG and GTGGC and we show that the frequency of hobo transposition increases as a function of the copy number of these motifs. The R end of hobo contains a unique 12 bp internal inverted repeat that is identical to the hobo terminal inverted repeats. We show that this internal inverted repeat suppresses transposition activity in a hobo element containing an intact L end and only 475 bp of the R end. In addition to establishing cis-sequences requirements for transposition, we analyzed trans-sequence effects of the hobo transposase. We show a hobo transposase lacking the first 49 amino acids catalyzed hobo transposition at a higher frequency than the full-length transposase suggesting that, similar to the related Ac transposase, residues at the amino end of the transposase reduce transposition. Finally, we compared target site sequences of hobo with those of the related Hermes element and found both transposons have strong preferences for the same insertion sites.  相似文献   

9.
I factors are LINE-like transposable elements in the genome of Drosophila melanogaster. They normally transpose infrequently but are activated in the germline of female progeny of crosses between males of a strain that contains complete elements, an I or inducer strain and females of a strain that does not, an R or reactive strain. This causes a phenomenon known as I-R hybrid dysgenesis. We have previously shown that the I factor promoter lies between nucleotides 1 and 30. Here we demonstrate that expression of this promoter is regulated by nucleotides 41-186 of the I factor. This sequence can act as an enhancer as it stimulates expression of the hsp7O promoter in ovaries in the absence of heat-shock. Within this region there is a site that is required for promoter activity and that is recognized by a sequence-specific binding protein. We propose that this protein contributes to the enhancer activity of nucleotides 41-186 and that reduced I factor expression in inducer strains is due to titration of this protein or others that interact with it.  相似文献   

10.
The hobo transposable element of Drosophila melanogaster is known to induce a hybrid dysgenesis syndrome. Moreover it displays a polymorphism of a microsatellite in its coding region: TPE repeats. In European populations, surveys of the distribution of hobo elements with regard to TPE repeats revealed that the 5TPE element is distributed along a frequency gradient, and it is even more frequent than the 3TPE element in Western populations. This suggests that the invasive ability of the hobo elements could be related to the number of TPE repeats they contain. To test this hypothesis we monitored the evolution of 16 lines derived from five initial independent transgenic lines bearing the 3TPE element and/or the 5TPE element. Four lines bearing 5TPE elements and four bearing 3TPE elements were used as a noncompetitive genetic background to compare the evolution of the 5TPE element to that of the 3TPE element. Eight lines bearing both elements provided a competitive genetic context to study potential interactions between these two elements. We studied genetic and molecular aspects of the first 20 generations. At the molecular level, we showed that the 5TPE element is able to spread within the genome at least as efficiently as the 3TPE element. Surprisingly, at the genetic level we found that the 5TPE element is less active than the 3TPE element, and moreover may be able to regulate the activity of the 3TPE element. Our findings suggest that the invasive potential of the 5TPE element could be due not only to its intrinsic transposition capacity but also to a regulatory potential.  相似文献   

11.
12.
The impact of the hobo transposable element in global reorganization of the Drosophila melanogaster genome has been investigated in transgenic lines generated by injection of hobo elements into the Hikone strain, which lacked them. In the present extensive survey, the chromosomal distribution of hobo insertion sites in the line 28 was found to be homogeneous and similar for all chromosomal arms, except 3L, when compared with other transgenic lines. However, some original features were observed in this line at the genetic and chromosomal levels. Several hotspots of insertion sites were observed on the X, second and third chromosomes. Five sites with a high frequency of hobo insertions were present on the 3L arm in most individuals tested, suggesting the action of selection for hobo element in some sites. The presence of doublets or triplet was also observed, implying that hobo inserts can show local jumps or insertions in preferred regions. This local transposition occurred independently in 11 specific genomic regions in many individuals and generations. The dynamics of this phenomenon were analysed across generations. These results support the use of the hobo system as an important tool in fundamental and applied Drosophila genetics.  相似文献   

13.
Identifying factors influencing transposable element activity is essential for understanding how these elements impact genomes and their evolution as well as for fully exploiting them as functional genomics tools and gene-therapy vectors. Using a genetics-based approach, the influence of genomic position on piggyBac mobility in Drosophila melanogaster was assessed while controlling for element structure, genetic background, and transposase concentration. The mobility of piggyBac elements varied over more than two orders of magnitude solely as a result of their locations within the genome. The influence of genomic position on element activities was independent of factors resulting in position-dependent transgene expression ("position effects"). Elements could be relocated to new genomic locations without altering their activity if ≥ 500 bp of genomic DNA originally flanking the element was also relocated. Local intrinsic factors within the neighboring DNA that determined the activity of piggyBac elements were portable not only within the genome but also when elements were moved to plasmids. The predicted bendability of the first 50 bp flanking the 5' and 3' termini of piggyBac elements could account for 60% of the variance in position-dependent activity observed among elements. These results are significant because positional influences on transposable element activities will impact patterns of accumulation of elements within genomes. Manipulating and controlling the local sequence context of piggyBac elements could be a powerful, novel way of optimizing gene vector activity.  相似文献   

14.
P. Capy  J. R. David  D. L. Hartl 《Genetica》1992,86(1-3):37-46
The population biology and molecular evolution of the transposable element mariner has been studied in the eight species of the melanogaster subgroup of the Drosophila subgenus Sophophora. The element occurs in D. simulans, D. mauritiana, D. sechellia, D. teissieri, and D. yakuba, but is not found in D. melanogaster, D. erecta, or D. orena. Sequence comparisons suggest that the mariner element was present in the ancestor of the species subgroup and was lost in some of the lineages. Most species contain both active and inactive mariner elements. A deletion of most of the 3 end characterizes many elements in D. teissieri, but in other species the inactive elements differ from active ones only by simple nucleotide substitutions or small additions/deletions. Active mariner elements from all species are quite similar in nucleotide sequence, although there are some-species-specific differences. Many, but not all, of the inactive elements are also quite closely related. The genome of D. mauritiana contains 20–30 copies of mariner, that of D. simulans 0–10, and that of D. sechellia only two copies (at fixed positions in the genome). The mariner situation in D. sechellia may reflect a reduced effective population size owing to the restricted geographical range of this species and its ecological specialization to the fruit of Morinda citrifolia.  相似文献   

15.
The discovery of large supramolecular complexes such as the purinosome suggests that subcellular organization is central to enzyme regulation. A screen of the yeast GFP strain collection to identify proteins that assemble into visible structures identified four novel filament systems comprised of glutamate synthase, guanosine diphosphate–mannose pyrophosphorylase, cytidine triphosphate (CTP) synthase, or subunits of the eIF2/2B translation factor complex. Recruitment of CTP synthase to filaments and foci can be modulated by mutations and regulatory ligands that alter enzyme activity, arguing that the assembly of these structures is related to control of CTP synthase activity. CTP synthase filaments are evolutionarily conserved and are restricted to axons in neurons. This spatial regulation suggests that these filaments have additional functions separate from the regulation of enzyme activity. The identification of four novel filaments greatly expands the number of known intracellular filament networks and has broad implications for our understanding of how cells organize biochemical activities in the cytoplasm.  相似文献   

16.
The transposable element hobo has been introduced into the previously empty Drosophila melanogaster strain Hikone so that its dynamics can be followed and it can be compared with the P element. Five transformed lines were followed over 58 generations. The results were highly dependent on the culture temperature, the spread of hobo element being more efficient at 25 degrees C. The multiplication of hobo sequences resulted in a change in the features of these lines in the hobo system of hybrid dysgenesis. The number of hobo elements remained low (two to seven copies) and the insertions always corresponded to complete sequences. Our findings suggest that, despite their genetic similarities, P and hobo elements differ in many aspects, such as mobility and regulation mechanisms.   相似文献   

17.
Fifteen species belonging to the obscura group of the genus Drosophila were screened for sequences homologous to Drosophila melanogaster transposable elements (TEs) as an initial step in the examination of the possible occurrence of TEs at chromosomal inversion breakpoints. Blots of genomic DNAs from species of the obscura group were hybridized at three different stringencies with 14 probes representing the major families of TEs described in D. melanogaster. The probe DNAs included copia, gypsy, 412, 297, mdg1, mdg3, 3S18, F, G, I, jockey, P, hobo, and FB3. D. melanogaster TEs were not well represented in the species of the obscura group analyzed. The TEs that were observed generally exhibited heterogeneous distributions, with the exception of F, gypsy and 412 which were ubiquitous, and 297, G, Sancho 2, hobo and FB which were not detected.by A. Bird  相似文献   

18.
Hobo is one of the three Drosophila melanogaster transposable elements, together with the P and I elements, that seem to have recently invaded the genome of this species. Surveys of the presence of hobo in strains from different geographical and temporal origins have shown that recently collected strains contain complete and deleted elements with high sequence similarity (H strains), but old strains lack hobo elements (E strains). Besides the canonical hobo sequences, both H and E strains show other poorly known hobo-related sequences. In the present work, we analyze the presence, cytogenetic location, and structure of some of these sequences in E strains of D. melanogaster. By in situ hybridization, we found that euchromatic hobo-related sequences were in fixed positions in all six E strains analyzed: 38C in the 2L arm; 42B and 55A in the 2R arm; 79E and 80B in the 3L arm; and 82C, 84C, and 84D in the 3R arm. Sequence comparison shows that some of the hobo-related sequences from Oregon-R and iso-1 strains are similar to the canonical hobo element, but their analysis reveals that they are substantially diverged and rearranged and cannot code for a functional transposase. Our results suggest that these ubiquitous hobo-homologous sequences are immobile and are distantly related to the modern hobo elements from D. melanogaster.  相似文献   

19.
A Saccharomyces cerevisiae transposable element which carries the his4C structural gene and which is capable of transposition, excision, and mutator activity is described. Physical evidence is presented for transposition of the his4C deoxyribonucleic acid sequences to a new location in the genome and for precise excision of these transposed deoxyribonucleic acid sequences in spontaneous his4C- segregants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号