首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence and distribution of several lectin binding sites on the outer surfaces of eggs, preparasitic second-stage juveniles (J2), parasitic second-stage juveniles (PJ2), females, and males of two tylenchid nematodes, Anguina tritici and Meloidogyne incognita race 3, were compared. In both species, a greater variety of lectins bound to the eggs than to other life stages; lectin binding to eggs was also more intense than it was to other life stages. Species-specific differences also occurred. More lectins bound to the amphids or amphidial secretions of M. incognita J2 than to the amphids or amphidial secretions of A. tritici J2. Lectins also bound to the amphids or amphidial secretions of adult male and female A. tritici, but binding to the cuticle occurred only at the head and tail and was not consistent in all specimens. Canavalia ensiformis and Ulex europaeus lectins bound specifically to the outer cuticle of M. incognita. Several other lectins bound nonspecifically. Oxidation of the cuticle with periodate under mild conditions, as well as pretreatment of the nematodes with lipase, markedly increased the binding of lectins to the cuticle of A. tritici J2 but not, in most cases, to M. incognita J2 or eggs of either species.  相似文献   

2.
Secretions from amphids, phasmids, and excretory system were stained by incubating nematodes in 0.1% coomassie brilliant blue G-250 in 40% aqueous methanol containing 10% acetic acid on slides with coverslips sealed with nail polish or Zut. Nematodes incubated in this staining solution usually produced copious amounts of secretions from their amphids and excretory pore. Phasmids also stained dark blue, enabling them to be easily observed. Other biological dyes stained these secretions or were useful for differentiating specific morphological features of nematodes.  相似文献   

3.
Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones alpha-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a protoplast-based bioassay, a low-molecular-weight peptide(s) (< 3 kDa) was shown to be responsible for the observed effect. This mitogenic oligopeptide(s) is functionally dissimilar to auxin and cytokinin and, in addition, it does not change the sensitivity of the protoplasts toward these phytohormones. In combination with the mitogen phytohemagglutinin (PHA), cyst nematode secretions also co-stimulated mitogenesis in human peripheral blood mononuclear cells (PBMC). The stimulation of plant cells isolated from nontarget tissue--these nematodes normally invade the roots of potato plants--suggests the activation of a general signal transduction mechanism(s) by an oligopeptide(s) secreted by the nematode. Whether a similar oligopeptide-induced mechanism underlies human PBMC activation remains to be investigated. Reactivation of the cell cycle is a crucial event in feeding cell formation by cyst nematodes. The secretion of a mitogenic low-molecular-weight peptide(s) by infective juveniles of the potato cyst nematode could contribute to the redifferentiation of plant cells into such a feeding cell.  相似文献   

4.
Pasteuria penetrans is a naturally occurring bacterial parasite of plant parasitic nematodes showing satisfactory results in a biocontrol strategy of root-knot nematodes (Meloidogyne spp.). The endospores attach to the outside nematode body wall (cuticle) of the infective stage second-stage juveniles (J2) of Meloidogyne populations. Optimal attachment level should be around 5–10 endospores per juvenile, as enough endospores will initiate infection without reducing the ability of the nematode to invade roots. Greater than 15 endospores may disable the nematode in its movements, and invasion may not take place. In this research, evidence is provided that P. penetrans spores disturbed the nematode forward movement by disorganising the nematode's head turns. The results based on Markov chain and Cochran probability model show that even a low number of 5–8 spores of P. penetrans attached to the nematode cuticle have a significant impact on that movement, which plays a role in nematode locomotion.  相似文献   

5.
基于发根培养体系的甘薯品种抗线虫特性鉴定研究   总被引:1,自引:0,他引:1  
利用发根农杆菌诱导的甘薯发根体系,鉴定甘薯品种抗线虫的特性。试验在甘薯品种徐薯18、栗子香和鲁78066诱导的发根体系上,接种马铃薯腐烂线虫,六周后调查发根繁殖线虫情况及线虫侵染发根情况,然后评价它们的抗线虫特性。结果表明:培养六周后,线虫在徐薯18、栗子香和鲁78066发根上繁殖倍数分别为8.82,0.76和0.70;在徐薯18发根上观察到多处线虫侵入位点,在栗子香和鲁78066发根上只观察到一处线虫侵入位点;基于以上结果,鉴定徐薯18为易感线虫病品种,栗子香和鲁78066为抗线虫病品种,徐薯18和鲁78066的鉴定结果和发病地自然诱发鉴定结果相一致,栗子香不同于发病地自然诱发鉴定结果。鉴定结果表明:用不同品种的甘薯发根作鉴定其抗线虫特性,具有体系简单、直观方便、重复性好以及不受自然环境影响等优点,进一步完善可以作为植物对线虫病抗性鉴定新的体系。  相似文献   

6.
RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.  相似文献   

7.
The monoclonal antibody IACR-CCNj.3d has previously been used to isolate a gene (gp-col-8) with strong similarity to cuticular collagen from a mixed stage Globodera pallida cDNA expression library. The antibody has also been shown to label specifically the amphidial canal of pre-parasitic second stage juveniles (J2) of several plant nematode species without any reactivity on the cuticular surface, indicating that this protein is either not present or is inaccessible on the cuticular surface. This paper investigates the cross-reactivity of Mab IACR-CCNj.3d with Meloidogyne arenaria and the localization of the putative collagen protein on the cuticular surface of parasitic stages in planta and on the cuticular surface of juveniles inside eggs. The antigen was shown to be present in all developmental stages of the two species of potato cyst nematodes and M. arenaria. The antibody bound strongly to the amphidial canal and hypodermis of pre-parasitic J2 and adult females. The antigen was present on the cuticular surface of the sausage-shaped J2 in planta and of first stage juveniles (J1) inside the eggs. The presence of collagen on the surface of the cuticle of moulting stages of plant parasitic nematodes has been observed for the first time. It is clear that this protein has a role in the construction of the cuticle of the first stage juveniles and parasitic second stage juveniles, during moulting inside the eggs and in the root tissue, respectively.  相似文献   

8.
The incorporation of fluorescein isothiocyanate (FITC) by J2 of Heterodera glycines, the soybean cyst nematode, and the resulting effects on fitness were determined. Live soybean cyst nematode J2 incubated in FITC fluoresced, primarily in the intestinal region, beyond auto-fluorescence. Dissection of animals, as well as fluorescence-quenching techniques, indicated that FITC was not simply bound to the cuticle. FITC was also found to cross the egg shell. Fluorescence increased in relation to FITC concentration and incubation time. Nematodes incubated in FITC remained active and did not lose their fluorescence even after two weeks at room temperature. Fluorescence of nematodes was not stable through development. Males which developed from fluorescent juveniles did not retain the stain. Both FITC and the DMF solvent reduced the hatching rate. However, those individuals that successfully hatched remained viable and able to infect roots. Incorporation of FITC was found to occur in three other genera of nematodes. Rhodamine B isothiocyanate was also found to be incorporated by H. glycines.  相似文献   

9.
Field experiments were carried out in 1991 and 1992 on sandy soil highly infested with the potato cyst nematode Globodera pallida. Half the trial area was fumigated with nematicide to establish two levels of nematode density. Three levels of soil compaction were made by different combinations of artificial compaction and rotary cultivation. Two potato cultivars were used in 1991 and four in 1992. Both high nematode density and soil compaction caused severe yield losses, of all cultivars except cv. Elles which was tolerant of nematode attack. The effects of the two stress factors were generally additive. Analysis of the yield loss showed that nematodes mainly reduced cumulative interception of light while compaction mainly reduced the efficiency with which intercepted light was used to produce biomass. This indicates that nematodes and compaction affect growth via different damage mechanisms. Nematodes reduced light interception by accelerating leaf senescence, by decreasing the specific leaf area and indirectly by reducing overall crop growth rate. Partitioning of biomass between leaves, stems and tubers was not affected by nematode infestation but compaction decreased partitioning to leaves early in the growing season while increasing it during later growth stages. The effects of nematodes and compaction on root length dynamics and nutrient uptake were also additive. This suggests that the commonly observed variation in yield loss caused by nematodes on different soil types is not related to differences in root system expansion between soils of various strength. Cv. Elles, which showed tolerance of nematodes by relatively low yield losses in both experiments, was characterised by high root length density and thick roots. These characteristics did not confer tolerance of soil compaction, since compaction affected root lengths and tuber yields equally in all cultivars. In the first experiment only, high nematode density led to decreased root lengths and lower plant nutrient concentrations. The yield loss which occurred in the second experiment was attributed to the effects of nematodes on other aspects of plant physiology.  相似文献   

10.
Glasshouse experiments were conducted to elicit biochemical substantiation for the observed difference in resistance to nematode infection in roots colonized by mycorrhiza, and susceptibility of the fresh flush of roots of the same plant that escaped mycorrhizal colonization. Tomato roots were assayed for their biochemical profiles with respect to total proteins, total phenols, indole acetic acid, activities of polyphenol oxidase, phenylalanine ammonia lyase and indole acetic acid oxidase. The roots of the same plant (one set) received Glomus fasciculatum and G. fasciculatum plus juveniles of Meloidogyne incognita separately; and half the roots of second set of plants received G. fasciculatum while the other half of roots did not receive any treatment. Roots colonized by G. fasciculatum recorded maximum contents of proteins and phenols followed by that of the roots that received G. fasciculatum plus M. incognita. However, IAA content was lowest in the roots that received mycorrhiza or mycorrhiza plus juveniles of root-knot nematode and correspondingly. Roots that received juveniles of root-knot nematode recorded maximum IAA content and per cent increase over healthy check and mycorrhiza-inoculated roots. The comparative assay on the activities of PPO, PAL and IAA oxidase enzymes in treated and healthy roots of tomato, indicated that PAL and IAA oxidase activities were maximum in G. fasciculatum colonized roots followed by the roots that received mycorrhiza plus juveniles of root-knot nematode, while the activity of PPO was minimum in these roots. The roots that received juveniles of root-knot nematode recorded minimum PAL and IAA oxidase activities and maximum PPO activity. Since the roots of same plant that received mycorrhiza and that did not receive mycorrhiza; and the plant that received nematode alone and mycorrhiza plus nematode recorded differential biochemical contents of proteins, total phenols and IAA, and differential activities of enzymes under study, it was evident that the biochemical defense response to mycorrhizal colonization against root-knot nematodes was localized and not systemic. This explained for the response of plant that differed in root galling due to nematode infection in presence of mycorrhizal colonization. The new or fresh roots which missed mycorrhizal colonization, got infected by nematodes and developed root galls.  相似文献   

11.
The influence of plant resistance on the size of individual root-knot nematodes was determined in greenhouse experiments. Five genotypes of alyceclover were inoculated with second-stage juveniles of Meloidogyne incognita race 3 or M. arenaria race 1. Plants were harvested at selected intervals and stained for detection of the nematodes, which were dissected from the roots. Length, width, and sagittal-sectional area of each animal were measured using an image-analysis system, and areas of nematodes in all stages were compared at different times and across alyceclover lines. Nematodes feeding on roots of resistant lines were consistently smaller than those on susceptible plants, with significant differences in growth detected after the final molt. Similar results were observed with both nematode species.  相似文献   

12.
On a few occasions, soybeans with broken root tips were included in tests to evaluate resistance to Heterodera glycines. Although females developed on these plants, the numbers tended to be lower than on similarly treated intact roots. To test the possibility that removal of the root meristem affected nematode development, a culture system using pruned soybeans was devised that permitted access to the roots without disturbing the plants. Treatments included removal of 2 mm of root tip at various times ranging from 24 hours before to 10 days after inoculation, or roots left intact. In each experiment, all roots were inoculated at the same time with equal numbers of freshly hatched second-stage juveniles of Heterodera glycines. No differences in nematode development were detected in plants with root tips removed after inoculation compared to the control. When tips were removed at or before inoculation, fewer juveniles entered roots and relatively fewer nematodes developed. Penetration levels and development correlated with root tip removal such that progressively fewer nematodes entered roots and relatively greater numbers of nematodes remained undeveloped as the time interval between root tip removal and inoculation was increased.  相似文献   

13.
14.
Using standard hybridoma technology and hierarchical screening, monoclonal antibodies (MAbs) were obtained with specific reactivity against two developmental stages of Globodera pallida. The procedure was based on enzyme-linked immunosorbent assay (ELISA) with homogenates prepared from second-stage juveniles, young adult females, and potato roots. Hybridomas were formed by fusing myelomas with splenocytes derived from mice immunized with either infective juveniles or females of G. pallida. About 600 hybridoma lines were screened from the fusion involving the mouse immunized with juveniles. Two MAbs (LJMAbl &2) were identified with high reactivity toward second-stage juveniles but no reactivity with either potato roots or females of G. pallida. A total of 630 cell lines was screened from the corresponding fusion involving the spleen of a mouse receiving immunogens from adult female nematodes. One MAb (LFMAbl) was obtained with the required specificity against only adult female G. pallida. This work extends the application of monoclonal antibodies in nematology from valuable probes for research and species identification to recognition of developmental stages. These specific MAbs have potential value in plant breeding programs for screening for resistant lines unable to support nematode development.  相似文献   

15.
Comparisons are made between the population dynamics of potato cyst nematode and root growth of Pentland Crown and Maris Piper potato cultivars. Large changes in the number of eggs occurred to a depth of 48 cm, particularly in a peaty loam and in plots treated with oxamyl. Oxamyl delayed the hatch of eggs in the peaty loam but not in the sandy loam, giving the protected plants several weeks without invasion damage during which they became bigger with their roots better established deeper in the soil. Oxamyl killed or impaired the movement of second stage juveniles but appeared to have little systemic activity to hinder juvenile development within roots.  相似文献   

16.
Use of the electrophysiological technique to examine the sensory perception of live, intact nematodes has provided detailed analysis of responses to known concentrations of test chemicals. The use of larger nematodes, such as the animal-parasite Syngamus trachea, enabled direct extracellular recordings from individual sensilla; with smaller nematodes, the recording electrode was inserted close to the cephalic region. Extracellular recordings from the cephalic region of second-stage juveniles and males of the potato cyst nematodes, Globodera rostochiensis and Globodera pallida, were obtained after exposure to a variety of semiochemicals, including sex pheromones and certain putative phagostimulatory compounds. The responses of adult females of the animal-parasitic nematode, Brugia pahangi, to some possible host cues, and the inhibition by ivermectin of the response to a known allelochemical were investigated. Exposure to acetylcholine was used to compare the concentration-dependent responses of second-stage juveniles of G. rostochiensis and adult females of B. pahangi and the insect-parasitic nematode Leidynema appendiculata. Use of a perfusion system enabled sequential exposure of individual nematodes to different test chemicals or to different concentrations of the same chemical. Incubating second-stage juveniles of G. rostochiensis for 24 h in a mAb showing specificity to amphidial secretions resulted in blocking of the normal response to host root diffusates. The potential of the electrophysiology technique for analysing perturbation of sensory perception is discussed.  相似文献   

17.
Specific host–parasite interactions exist between species and strains of plant parasitic root-knot nematodes and the Gram-positive bacterial hyperparasite Pasteuria penetrans. This bacterium produces endospores that adhere to the cuticle of migrating juveniles, germinate and colonise the developing female within roots. Endospore attachment of P. penetrans populations to second-stage juveniles of the root-knot nematode species Meloidogyne incognita and Meloidogyne hapla showed there were interactive differences between bacterial populations and nematode species. Infected females of M. incognita produced a few progeny which were used to establish two nematode lines from single infective juveniles encumbered with either three or 26 endospores. Single juvenile descent lines of each nematode species were produced to test whether cuticle variation was greater within M. hapla lines that reproduce by facultative meiotic parthenogenesis than within lines of M. incognita, which reproduces by obligate parthenogenesis. Assays revealed variability between broods of individual females derived from single second-stage juvenile descent lines of both M. incognita and M. hapla suggesting that progeny derived from a single individual can differ in spore adhesion in both sexual and asexual nematode species. These results suggest that special mechanisms that produced these functional differences in the cuticle surface may have evolved in both sexually and asexually reproducing nematodes as a strategy to circumvent infection by this specialised hyperparasite.  相似文献   

18.
Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.  相似文献   

19.
Studies of the migration of second stage juveniles (JJ2) ofthe root-knot nematode Meloidogyne incognita in Arabidopsisroots were made at the cellular level using immunolabellingtechniques. A panel of antibodies that recognize epitopes presentin the plant extracellular matrix (JIMs) and the nematode cuticle(PC245) were used. The normal route for the juvenile (J2) hasbeen reconfirmed for both in vitro and in vivo conditions. Histologicalstudies show that, during migration towards the root meristem,juveniles (JJ2) sometimes break the physico-chemical barrierof the endodermis and establish close contact with the centralcylinder. Despite this, the juveniles continue their intercorticalmigration towards the root meristem. When the endodermis isbreached, hyperplasia and hypertrophy occur and a prematuregall is formed. Ultrastructural observations confirmed thatloosening of the middle lamella occurs during progress throughthe cortex. Differences in the patterns of labelling of healthyand infected roots were revealed when the antipolygalacturonicacid antibody, JIM5, was applied; epitopes recognized by thisantibody are mainly located on the triple junctions betweencells. Some of the antibodies used proved very useful in illustratingthe intercellular migration of JJ2 in the vascular cylinder,where they move in the vicinity of the protoxylem and futuremetaxylem cells. An envelope surrounding the nematodes, butlocated specifically on plant cell walls, was observed wheninfected rootsections were probed with PC245. This materialat this interface appears to be of nematode origin. Characterizationof the molecules involved is currently under investigation. Key words: Meloidogyne incognita, Arabidopsis thaliana, immunolabelling, JIM(s), migration  相似文献   

20.
The behavior of two isolates of Pratylenchus penetrans on six potato clones was assessed to test the hypothesis that these nematode isolates from New York were different. Four potato cultivars (Superior, Russet Burbank, Butte, and Hudson) and two breeding lines (NY85 and L118-2) were inoculated with nematode isolates designated Cornell (CR) and Long Island (LI). Population increase and egression of nematodes from roots were used to distinguish resistance and susceptibility of the potato clones. Based on numbers of eggs, juveniles, and adults in their roots 30 days after inoculation, potato clones Butte, Hudson, and L118-2 were designated resistant to the CR isolate and susceptible to the LI isolate. More eggs were found in the roots of all plants inoculated with the LI isolate than with the CR isolate. The clones NY85 and L118-2 were inoculated with the CR and LI isolates in a 2 x 2 factorial experiment to assess differences in nematode egression. Egression was measured, beginning 3 days after inoculation, for 12 days. The rates of egression were similar for the four treatments and fit linear regression models, but differences were detected in numbers of egressed nematodes. More nematodes of the CR isolate than the LI isolate egressed from L118-2. Differences in egression of females was particularly significant and can be used as an alternative or supplement to reproduction tests to assess resistance in potato to P. penetrans and to distinguish variation in virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号