首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Immature albino rats were subjected to (a) continuous illumination for 5–9 days, or (b) continuous illumination followed by prolonged darkness. Their electroretinographic responses and the ultrastructural characteristics of the rod outer segments, as revealed by a mixture of zinc iodine-osmium tetroxide (ZIO) at different temperatures, were studied and compared with those of a control group maintained in a cyclic rhythm of light and darkness.Noteworthy differences in the distribution of ZIO reactive sites were observed in the rats exposed for 5–9 days to continuous illumination (no electroretinographic responses) as compared with normal controls. At 4°C, ZIO staining was negative in the rods of illuminated rats whereas at 20 and 60°C it was positive inside the tubular and vesicular structures.After prolonged darkness, in rats with a partial electroretinographic recovery and ultrastructural restoration, the ZIO reaction showed a similar pattern to that observed in the control group, ZIO deposits being found both in the intra and extradiscal spaces.Supported by Grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina and the National Institutes of Health (51 NS 06953-09 NEUA), U.S.A., and by the Universidad Nacional de Buenos Aires and Fight for Sight Inc., N.Y., USA.We are indebted to Miss Margarita López for her skilful technical assistance and to Mr. Alberto Saenz for the electron micrographs.  相似文献   

2.
Larval Typhlotriton spelaeus collected from five caves in Pulaski Co., Missouri, were kept as larvae or induced to transform in darkness or continuous fluorescent illumination. Larvae maintained in darkness for 215 and 279 days had smaller eyes, smaller rod inner and outer segments, and fewer metaphase figures in the genninative zone of the neural retina than comparable larvae maintained in light (258 lux). Except for visual cell size, differences were small and for each characteristic exceptions were observed. One larva kept in light showed early retinal degeneration comparable to that in transformed adults of T. spelaeus. All larvae exhibited optomotor behavior both before and after the experiment. Among animals induced to transform by L-thyroxin and maintained in darkness 111 to 366 days, visual cell and pigment epithelium degeneration was more extensive and more frequent than in animals kept for the same length of time in light (237-298 lux). In darkness the frequency of animals with retinal degeneration increased between 111 and 366 days. In light some animals exhibited pigment epithelium reduction with normal visual cells, and others had free, pigmented cells in the subretinal space. These effects were not comparable to degeneration in darkness. Eyelids covered the eyes of only a few animals in both light and dark treatments. The extent of eyelid encroachment over the eye was greater in darkness than in light. Most animals exhibited optomotor responses after experiments, but responses of animals kept in darkness were impaired in comparison to those of animals kept in light.  相似文献   

3.
Ultrastructural changes of the pineal organ were investigated in the blind cave fish, Astyanax mexicanus, kept under continous artificial light (5000 lux), in continuous darkness, and under natural light conditions. The pineal end-vesicle of the fish kept under natural photoperiod consisted of photoreceptor cells and supporting cells mixed with a few ganglion cells. The photoreceptor cells possessed well-developed outer segments with regularly arranged lamellar membranes. The supporting cells contained a number of lipid droplets and large globular cisternae filled with fine granules. In the fish kept under continuous light or in darkness, the pineal end-vesicle displayed a dilated lumen, and the outer segments of the receptors showed signs of degeneration. Furthermore, alterations of cell organelles were observed in the photoreceptor and supporting cells.  相似文献   

4.
Exposure of albino rats to continuous light of low intensity (350–700 lux) for 4 months produces massive degeneration of the photoreceptor segments and cell bodies of the outer nuclear layer of the retina. Only a few heterochromatic, receptor cell nuclei remain, and no photoreceptor segments are present. On the other hand, the inner layers of these retinas remain morphologically intact. The inner nuclear layer of the normal rat retina contains a group of amacrine cells which contain the putative neurotransmitter, dopamine (DA). Short term exposure to light (30 or 60 min) markedly stimulates the rate of DA turnover in these cells in normal, previously dark-adapted rats. Such enhancement of the rate of neurotransmitter turnover in the brain has been correlated with an increase in nerve impulse activity. The present study was undertaken to determine if the dopaminergic amacrine cells of the inner nuclear layer were still responsive to light in the retinas of rats whose photoreceptors were previously destroyed by long term exposure to continuous illumination. One week before sacrifice, the animals which had been housed in continuous light for 4 months were returned to normal 14 hr light: 10 hr dark lighting conditions. At the end of this time they and a group of control rats which had been housed in cyclic lighting conditions for the entire 4 months were dark adapted for approximately 15 hr. Then the rate of retinal DA turnover was estimated from the depletion of DA following inhibition of DA synthesis by α methyl para-tyrosine. The turnover of DA in the dark-adapted retinas of the control rats and of experimental rats with photoreceptor degeneration was dramatically enhanced 2–4 fold by short term exposure (up to 1 hr) to light. Since rats are nocturnal and avoid light, we tested the light aversion of another group of rats which had been exposed to light for 4 months and then returned to cyclic lighting conditions for one week. These rats and control animals which had been maintained in cyclic lighting conditions for 4 months both chose the dark side of a light-dark box over 80% of the time. This behavior of the rats with retinal degeneration was taken as a crude indication of their continued ability to detect light. The light-induced increase in DA activity in retinas with photoreceptor degeneration may play a role in the continued ability of these rats to perceive light.  相似文献   

5.
Dividing pairs or single cells of the large dinoflagellate, Pyrocystis fusiformis Murray, were isolated in capillary tubes and their morphology was observed over a number of days, either in a light-dark cycle or in constant darkness. Morphological stages were correlated with the first growth stage, G1, DNA synthesis, S, the second growth stage, G2, mitosis, M, and cytokinesis, C, segments of the cell division cycle. The S phase was identified by measuring the nuclear DNA content of cells of different morphologies by the fluorescence of 4′, 6-diamidino-2-phenylindole dichloride.

Cells changed from one morphological stage to the next only during the night phase of the circadian cycle, both under light-dark conditions and in continuous darkness. Cells in all segments of the cell division cycle displayed a circadian rhythm in bioluminescence. These findings are incompatible with a mechanism for circadian oscillations that invokes cycling in Gq, an hypothesized side loop from G1. All morphological stages, not only division, appear to be phased by the circadian clock.

  相似文献   

6.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

7.
Ninety male Sprague-Dawley rats were exposed to 1:1-h light-dark (LD1:1) cycles for 50-90 days, and then they were released into constant darkness (DD). During LD1:1 cycles, behavioral rhythms were gradually disintegrated, and circadian rhythms of locomotor activity, drinking, and urine 6-sulfatoxymelatonin excretion were eventually abolished. After release into DD, 44 (49%) rats showed arrhythmic behavior for >10 days. Seven (8%) animals that remained arrhythmic for >50 days in DD were exposed to brief light pulses or 12:12-h light-dark cycles, and then they restored their circadian rhythms. These results indicate that the circadian clock was stopped, at least functionally, by LD1:1 cycles and was restarted by subsequent light stimulation.  相似文献   

8.
To evaluate the influence of light and darkness on brain pyroglutamyl-peptidase I (pGluPI) activity, four experimental groups of rats were compared at the same time-point (10.00 h). Two groups were designed with a standard 12-12 h light-dark cycle: In group A, the lights were on from 7.00 h to 19.00 h, and the experiment was done under light conditions; in group B, the lights were on from 19.00 h to 7.00 h, and the experiment was done under darkness conditions. Two additional groups were designed with nonstandard light-dark conditions: In group C, the animals were subjected to constant light, and the experiment was done under light conditions. In group D, animals were subjected to constant darkness, and the experiment was done under darkness conditions. Light (vs darkness) and standard (vs nonstandard) conditions produced significant changes on pGluPI activity in specific structures; the data suggested that endogenous substrates of pGluPI such as thyrotropin-releasing hormone and gonadotropin-releasing hormone, might be modified in parallel. There was left predominance in the retina under light conditions on a standard schedule (group A). The regional pattern of distribution of activity was similar in groups on a standard schedule (A vs B) and in groups tested under constant light-dark conditions (C vs D). However, this pattern differed between groups subjected to standard vs constant light-dark conditions (A and B vs C and D). These results support an influence of environmental light and darkness on pGluPI activity, which may reflect concomitant changes in its susceptible substrates and consequently in their functions.  相似文献   

9.
Summary The rhythm of autophagic degradation (AV) in visual cell inner segments shows circadian characteristics: it persists under constant conditions of continuous darkness (DD) and continuous light (LL) and can be reentrained to phase-shifts of the light-dark (LD) cycle. However, unlike the rhythm of disk-shedding and many other circadian rhythms, the rhythm of AV persists with a distinct peak even after 3 days of LL and is rapidly abolished to almost baseline levels after 1.5 days of DD, confirming our previous observations of a strong light-dependence of AV. Since the rhythms of disk-shedding and AV reveal this inverse pattern in DD and LL, different regulative mechanisms may be involved.Light stimulation with increasing intensities at day-time and night-time evoked AV responses that increased and disk-shedding responses that decreased at higher intensities. Furthermore, both the AV and phagosome response was different according to day-time or night-time stimulation, pointing towards the possibility of a circadian phase of sensitivity to light.Abbreviations AV autophagic degradation, autophagic vacuole, autophay - LD light dark cycle - DD constant darkness - LL constant light - CNS central nervous system - SCN suprachiasmatic nucleus - DA dopamine - ftc footcandle - ANOVA analysis of variance  相似文献   

10.
Cell division contributing to longitudinal growth of the shoot apex was investigated inChenopodium rubrum in segments marked by the axils of leaf primordia. Plants treated with two short days (16h of darkness and 8h of light) were compared with two non-induced controls (cultivated in continuous light or treated by alternations of 8 h of darkness and 4 h of light for two days). During the short-day treatments the rate of cell division contributing to the longitudinal growth decreases in all segments of the shoot apex irrespective of whether the darkness was given in inductive or non-inductive photoperiods. The rate of cell division contributing to longitudinal growth increases in the upper internodes of the shoot apex after the termination of the photoperiodic treatment and transfer of the plants to continuous light. However, cell division remains inhibited in the lowest segment of the shoot apex. This inhibition in the differentiating parts of the shoot apical meristem is a direct consequence of photoperiodic induction. It is supposed that this inhibition is related to evocation similarly as the well-known phenomenon of stimulation of cell division in the apical dome.  相似文献   

11.
-The effect of photoperiod on growth of juvenile giant freshwater prawns, Macrobrachium rosenbergii de Man, was tested. The prawns were divided into four groups and each group was reared under one of the following light-dark conditions: continuous darkness (L0:D24), 12 hr light: 12 hr dark (L12:D12), 16 hr light: 8 hr dark (L16:D8), and 20 hr light: 4 hr dark (L20:D4). Body size was determined at the age of 45, 75, and 110 days by measuring total length, orbital length, and carapace length; body weight was determined at the age of 110 days. At 110 days of age, the prawns reared under L0:D24 photoperiod were significantly longer and heavier than those reared under other light-dark conditions. The survival rate of the prawns reared under L0:D24 photoperiod was also higher than that of other groups. This study indicates a positive effect of continuous darkness on growth and survival rate of juvenile giant freshwater prawns, M. rosenbergii.  相似文献   

12.
本文研究了埃及蟾蜍(Bufo regularis Reuss)从早期幼虫到变态结束,光和暗对视网膜的影响。所观察到的对光和暗反应的变化限于色素上皮和光感受细胞。实验动物分四组:1)在亮处固定的对照(CL);2)在暗处固定的对照(CD);3)连续养在暗处的动物(DD);4)连续受光照的动物(LL)。在CD和DD组动物,黑色素颗粒在色素上皮细胞突起(PEP)中的分布限于光感受细胞顶部间之外周区(巩膜方位)。与此相反。在CL和LL组动物,大量黑色素颗粒则分散在视觉细胞外节段和椭球段间色素上皮细胞突起之向心端位置(玻璃体方位)。在这种动物,上皮细胞色素对光和暗反应发生的光机械运动出现在肢芽期以前。新变态小蟾蜍DD组眼球,与其他三组比较起来,色素上皮层相当厚并含有大的脂肪滴。在较晚期,只有DD组动物的一些杆细胞外节段呈现退化现象。其次,这一组中,由于连续缺少光照的结果,眼球之锥细胞数目有明显减少。四组动物的视网膜上也观察到锥细胞的细胞核位置略有不同。  相似文献   

13.
R H Lee  B M Brown  R N Lolley 《Biochemistry》1984,23(9):1972-1977
Phosphorylated proteins may play an important role in regulating the metabolism or function of rod photoreceptors. In mammalian retinas, a photoreceptor protein of 33 000 (33K) molecular weight is phosphorylated in a cyclic nucleotide dependent manner in vitro. Since light initiates the activation of a photoreceptor-specific phosphodiesterase and a rapid reduction in guanosine cyclic 3',5'-phosphate concentration, phosphorylation of the 33K protein may be modulated by light in situ. In order to test this possibility, dark-adapted rat retinas were incubated for 30 min in the dark in phosphate-free Kreb's buffer containing [32P]orthophosphate. Following incubation, rod outer segments were detached by shaking, and the 32P-labeled rod outer segment proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and quantitated by densitometric scanning. The incorporation of radioactivity (32P) into the 33K protein was higher than into any other rod outer segment protein, and the amount of 32P-labeled 33K protein in the detached rod outer segments remained unchanged during 10 additional min of darkness. The addition of isobutylmethylxanthine to the incubation medium enhanced the incorporation of 32P into 33K protein to about 400% of the original level. Exposure of freshly detached rod outer segments to room light for 90 s decreased the amount of labeled 33K protein to 45% of its original level. The dephosphorylation of labeled 33K protein continued, reaching 12% of the original dark value 10 min after the previously illuminated sample was returned to darkness. Light initiated the phosphorylation of rhodopsin, and rhodopsin phosphorylation continued during the postillumination period of darkness.  相似文献   

14.
Experiments were designed to evaluate the primary and secondary humoral responses to a rotating magnetic field configuration, which is known to evoke significant biobehavioral changes. Ten days after inoculation with human serum albumin and 10 days before a booster, female rats were exposed to eigher a 0.5 Hz rotating magnetic field (RMF) or to room conditions (control). The lighting schedule was either continuous or involved a light-dark cycle (LD) of 12:12h. A third group of rats served as colony room controls. Group differences of low statistical significance were found when females were exposed to continuous lighting rather than the LD 12:12 light-dark cycle. However, the effects were considered trivial and not sufficient to explain the previously reported biobehavioral changes evoked by this field configuration.  相似文献   

15.
16.
In the present study, although some evidence in favour of a circadian variation in brain spermidine concentration was obtained in Swiss mice, peak concentrations occurred during darkness and were therefore out of phase with those reported in a previous study in the same mouse strain (Rodichok and Friedman, 1978). In addition the largest magnitudes of oscillation (34.8 and 22.7% for spermidine and spermine, respectively) were only about one quarter as large as those previously reported. The changes in polyamines did not correlate with change in locomotor activity. In C.D. mice a more complex pattern of change in spermidine was observed with peaks occurring in both the light and the dark phases of the cycle. Exposure of these animals to continuous light or continuous darkness modified the pattern of these fluctuations but did not abolish them.

It is concluded that, although daily fluctuations in spermidine and spermine concentration do occur in both entrained and free running mice such changes do not correlate with the phase of the light-dark cycle or with locomotor activity.  相似文献   


17.
Manganese superoxide dismutase (Mn-SOD) is a naturally-occurring scavenger of superoxide, one of several reactive oxygen intermediates. To determine if Mn-SOD expression is enhanced as a defensive mechanism against oxidative challenges, such as intense light exposure, rats were exposed to cyclic light (80lux) for 2 weeks, intense light (1,800lux) for 24h, and then again to cyclic light. Experimental and control (exposed to cyclic light only) eyes were enucleated 3h, 1, 3, 7, and 14 days after light challenge. Protein expression was examined immunohistochemically using rabbit antisera against rat Mn-SOD. There was no significant difference between the light-exposed and the control groups in the thickness of the outer nuclear layers. Both retinal pigment epithelial cells and photoreceptor inner segments in the normal retina were labeled for Mn-SOD. Mn-SOD labeling was lost 3h and day 1 after light challenge. It was re-expressed in the retinal pigment epithelial cells 3, 7, and 14 days after the light challenge, and in the photoreceptor inner segments after day 14. These results suggest that the retina might have a protective potential against light damage, in which Mn-SOD may play an important role.  相似文献   

18.
The effect of different photoperiods on the specific secretory cells of the pars tuberalis was examined in male chicks. Animals were placed in one of three different photoperiod regimens: (1) normal control (light:dark = 12 h:12 h), (2) continuous light (L:D = 24 h:0), and (3) extended darkness (L:D = 1 h:23 h). The levels of common alpha-subunit mRNA in the pars tuberalis were examined by Northern blot analysis and compared with those in the pars distalis. In chicks exposed to continuous light for 1 week, alpha-subunit mRNA level in the pars tuberalis was decreased, although the level in the pars distalis was increased. Exposure to continuous light for 30 days also induced a decrease in alpha-subunit mRNA level in the pars tuberalis. On the other hand, in chicks exposed to extended darkness for 1 week, the alpha-subunit mRNA level of the pars tuberalis was markedly increased. In situ hybridization with digoxigenin-labeled common alpha-subunit cRNA probe also showed that the hybridization signals for alpha-subunit mRNA in the pars tuberalis cells become weak under continuous light for 30 days but they are very intense under extended darkness. Thus, the synthesis of alpha-subunits in the chick pars tuberalis was inhibited by continuous light but stimulated by extended darkness. These results were confirmed by semiquantitative electron-microscopic analyses. After exposure to continuous light for 30 days, many pars tuberalis (PT)-specific cells were filled with enlarged secretory granules, showing the reduction of secretory activity. On the contrary, extended darkness for 30 days induced hypertrophy of the PT-specific cells; the areas of cytoplasm and nucleus were significantly increased. In addition, secretory granules became small in size and exocytotic features were more frequent. Mitochondria and lysosomes were also increased in number. Thus, the synthetic and secretory activities of the PT-specific cells were increased under extended darkness. The data indicate that the specific cells of the pars tuberalis are responsive to photoperiodic changes in the chick.  相似文献   

19.
Dynamics of rhythmic oscillations in the activity of arylalkylamine N-acetyltransferase (AA-NAT, the penultimate and key regulatory enzyme in melatonin biosynthesis) were examined in the retina and pineal gland of turkeys maintained for 7 days in the environment without daily light-dark (LD) changes, namely constant darkness (DD) or continuous light (LL). The two tissues differentially responded to constant environment. In the retina, a circadian AA-NAT activity rhythm disappeared after 5 days of DD, while in the pineal gland it persisted for the whole experiment. No circadian rhythm was observed in the retinas of turkeys exposed to LL, although rhythmic oscillations in both AA-NAT and melatonin content were found in the pineal glands. Both tissues required one or two cycles of the re-installed LD for the full recovery of the high-amplitude AA-NAT rhythm suppressed under constant conditions. It is suggested that the retina of turkey is less able to maintain rhythmicity in constant environment and is more sensitive to changes in the environmental lighting conditions than the pineal gland. Our results indicate that, in contrast to mammals, pineal glands of light-exposed galliformes maintain the limited capacity to rhythmically produce melatonin.  相似文献   

20.
In chicken retinas, melatonin levels and the activity of serotonin N-acetyltransferase (NAT), a key regulatory enzyme of melatonin biosynthesis, are expressed as circadian rhythms with peaks of levels and activity occurring at night. In the present study, NAT activity was examined in retinas of embryonic and posthatch chicks to assess the ontogenic development of regulation of the enzyme by light, circadian oscillators, and the second messenger cyclic AMP. During embryonic development, NAT activity was consistently detectable by embryonic day 6 (E6). Significant light-dark differences were first observed on E20, and increased to a maximum amplitude of sixfold by posthatch day 3 (PH3). Circadian rhythmicity of NAT activity appears to develop at or prior to hatching, as evidenced by day-night differences of activity in constant darkness observed in PH1 chicks that had been exposed to a light-dark cycle in ovo only. NAT activity is regulated by a cyclic AMP-dependent mechanism. Activity was significantly increased by incubating retinas with forskolin or dibutyryl cyclic AMP as early as E7, and seven- to ninefold increases were observed following treatment with these agents on E14. Thus, development of the cyclic AMP-dependent mechanism for increasing NAT activity significantly precedes that of rhythmicity, suggesting that the onset of rhythmicity may be related to the onset of photoreception or development of the circadian oscillator in chick retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号