首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Submerged macrophytes are a major component of freshwater ecosystems, yet their net effect on water column phosphorus (P), algae, and bacterioplankton is not well understood. A 4-month mass-balance study during the summer quantified the net effect of a large (5.5 ha) undisturbed macrophyte bed on these water-column properties. The bed is located in a slow-flowing (0.05–0.1 cm s–1) channel between two lakes, allowing for the quantification of inputs and outputs. The P budget for the study period showed that, despite considerable short-term variation, the macrophyte bed was a negligible net sink for P (0.06 mg m–2 day–1, range from –0.76 to +0.79 mg m–2 day–1), demonstrating that loading and uptake processes in the weedbed roughly balance over the summer. Chlorophyll a was disproportionately retained relative to particulate organic carbon (POC), indicating that the algal component of the POC was preferentially trapped. However, the principal contribution of the weedbed to the open water was a consistent positive influence on bacterioplankton production over the summer. Conservative extrapolations based on measured August specific exports (m–2 day–1) of P and bacterial production exiting the weedbed applied to five regional lakes varying in lake morphometry and macrophyte cover suggest that even in the most macrophyte dominated of lakes (66% cover), P loading from submerged weedbeds never exceeds 1% day–1 of standing epilimnetic P levels, whereas subsidization of bacterioplankton production can reach upward of 20% day–1. The presence of submerged macrophytes therefore differentially modifies algae and bacteria in the water column, while modestly altering P dynamics over the summer.  相似文献   

2.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

3.
Past studies of organic matter processing in stream ecosystems have focused on the fate of allochthonous terrestrial leaf detritus. In streams with a reduced canopy, submerged macrophytes may provide a significant source of organic matter to the microbial community and higher trophic levels. We compared mass loss patterns and microbial dynamics between a submerged macrophyte, Sagittaria platyphylla, and a deciduous leaf, Populus deltoides. Mass loss rates were higher for the submerged macrophyte, though exponential decay values indicated that both are "fast" decomposers. Bacterial abundance was not significantly different between plant types, but bacterial productivity was significantly higher in Sagittaria. Although fungal biomass was higher overall for Populus, it was not significantly different from that of Sagittaria until day 30. Relative to fungi, bacteria made up 4% and 7% of the peak microbial biomass on Populus and Sagittaria, respectively. Aquatic hyphomycete sporulation was detected only on Populus. These results suggest that in systems where submerged macrophytes are abundant, they can provide a carbon source quantitatively comparable to that of riparian leaf detritus, but that qualitative differences in leaf structural composition cause a shift toward a more significant role for bacterial decomposers.  相似文献   

4.
During the 1950s, the submerged vegetation of shallow lakes in north‐eastern Germany was dominated by nutrient tolerant species, with Ceratophyllum demersum and Myriophyllum sp. being most common. Almost one third of 300 investigated lakes had already lost their submerged macrophytes at that time. Very shallow lakes showed either high or low macrophyte abundance. Increasing depth resulted in medium macrophyte abundances, which may contribute to the stabilisation of local or temporary clearwater states. Forty years later, the percentage of lakes without macrophytes had dramatically increased. Between 55 and 85% of the investigated lakes showed a low abundance. The decline was most pronounced in very shallow lakes. The majority of the investigated lakes showed summer TP concentrations below 100 μg L–1, but no colonisation by submerged macrophytes, which indicates a resilience against re‐colonisation.  相似文献   

5.
Herbivory of invertebrates on submerged macrophytes from Danish freshwaters   总被引:5,自引:0,他引:5  
1. Invertebrate herbivory on submerged freshwater macrophytes, measured as per cent leaf area lost, was determined for sixteen species and forty-two populations of macrophytes during peak summer biomass in Danish streams and lakes. 2. All seventeen Potamogeton populations and seventeen of the remaining twenty-five non-Potamogeton populations were grazed. Species of Potamogeton were significantly more heavily grazed (mean 4.2%) than non-Potamogeton species (mean 0.8%). Herbivory losses were not significantly different between stream (mean 2.4%) and lake populations (mean 1.9%). Wide ranges in herbivory loss were observed between species from the same locality and within species from different localities. The location of main damage to either old or young leaves was not species specific but varied among localities. Additional data for four macrophyte populations showed that herbivory loss had a strong seasonal variation (e.g. 1.0–26.3% for Potamogeton perfoliatus), with maximum losses during May-June. 3. Although the mean defoliation percentages were low during the period of maximum macrophyte biomass, they were not systematically lower than encountered for terrestrial plants.  相似文献   

6.
Summary Myrica gale litter deposition and decomposition were studied in a central Massachusetts peatland to determine the amount of N made available to the ecosystem by these processes. Leaf litter added 114–140 g biomass m–2 annually and contained 2.12–2.59 g N m–2 returning about 70% as much N to the ecosystem as was fixed annually byMyrica gale. During the first five years of decomposition, the leaf liter lost only 40% of its initial biomass and released only 10% of its initial N content. About 60% of its original N mass was still present when the litter reached the permanently waterlogged zone, and thus was effectively lost to the vegetation. The low decomposition rate was due primarily to the chemical content of the litter because similarly low rates were observed in an upland forest where the native litter decayed rapidly. The initial lignin content (40%) ofM. gale litter may be largely responsible for its slow decomposition in spite of its relatively high (1.69%) initial N content.M. gale litter decayed substantially more slowly and had a much higher initial lignin content than the litter of other woody N2-fixing plants which have been examined.  相似文献   

7.
Decomposition of aquatic macrophytes can considerably influence carbon cycling and energy flow in shallow freshwater aquatic ecosystems. The Atchafalaya River Basin (ARB) is a large floodplain river in southern Louisiana that experiences a seasonal floodpulse and is spatially composed of a mosaic of turbid riverine and stagnant backwater areas. During two seasons, winter and fall of 1995, we examined decomposition of four common aquatic macrophytes in the ARB: water hyacinth (Eichhornia crassipes), arrowhead (Sagittaria platyphylla), coontail (Ceratophyllum demersum) and hydrilla (Hydrilla verticillata). To determine decay rates, we used litter bags of two mesh sizes (5 mm and 0.25 mm) and analyzed data with a single exponential decay model. Analysis of decay rates established several trends for aquatic macrophyte decomposition in the ARB. First, macrophytes decayed faster in fall than winter due to the effect of increased temperature. Second, macroinvertebrates were the primary decomposers of macrophytes in riverine sites and microbes were the primary decomposers in backwater areas. These trends may have been related to decomposer-habitat interactions, with well-oxygenated riverine sites more hospitable to invertebrates and backwater areas more favorable to microbes because of high organic inputs and reduced flow. Decay rates for macrophytes, ranked from slowest to fastest, were E. crassipes<S. platyphylla<C. demersum<H. verticillata. Slower decomposition of E. crassipes was probably a result of microbial inhibition by the waxy-cutin outer layer and low nutritional value. The accelerated decomposition of C. demersum and H. verticillata was most likely a function of the large surface area of the highly dissected leaves. Macroinvertebrate numbers were twice as high in riverine sites compared to backwater sites. In the winter, amphipods Gammarus spp. and Hyallela azteca composed a large percentage of the total density on detritus. In the fall, Caenis sp. was prevalent in the backwater habitat and dipterans were abundant in the riverine site. We investigated the microbial component involved in the decomposition of E. crassipes and S. platyphylla and found that the highest microbial respiration rates occurred early in the winter at the backwater site. Bacterial density in the winter on E. crassipes and S. platyphylla averaged 1.4×106 cm-2 after two days and decreased to 2.0×105 cm-2 after 28 d. Our results emphasized the importance of the microbial community in the decomposition of macrophytes in the ARB, especially in backwater habitats and in the early stages of decay.  相似文献   

8.
Breakdown and nutrient dynamics of submerged macrophytes were studied in Myall Lake, Australia. Mass loss of Myriophyllum sulsagineum was the lowest (64.90%) among the studied macrophytes during the 322 days followed by charophytes (60.79%), whereas Najas marina and Vallisneria gigantea lost 91.15 and 86.02% of their respective initial mass during that time. The overall exponential breakdown rates of Najas marina and Vallisneria gigantea were similar, with k-values of 0.24 and 0.23 day−1, respectively. These rates were significantly higher than the break down rates of charophytes (0.007 day−1) and M. sulsagineum (0.008 day−1). During growth phase, water column depicted lower nutrient concentrations while during decay period, significant increase in water column nutrients resulted. Release of nutrients from decomposing macrophytes and incorporation of these nutrients into sedimentary phase as well as uptake of nutrients by the growing macrophytes, can present a considerable cycling pathway of nutrients in Myall lake system. The results of this study suggest that different submerged macrophytes may differ appreciably in quality and may exhibit different decomposition rates, patterns and nutrient dynamics in aquatic ecosystems in general, and Myall lakes in particular.  相似文献   

9.
Summary Previous experiments, using 32P pulse labelling, showed that when roots of Lolium perenne were detached from the shoot, a substantial proportion of the phosphorus in the roots could within a few weeks be released and be captured by another, living plant. This paper describes experiments designed to confirm and further investigate this rapid nutrient transfer. Roots from plants grown with ample N and P were detached and placed in litter bags in soil. They lost up to 60% of their initial N and up to 70% of their P in three weeks. Even when roots were grown with deficient P supply, resulting in C:P ratios of 300–400, they lost 20–30% of their initial P. Time-courses of 32P loss from roots suspended in solution gave results which agreed with these figures. The initially rapid rate of 32P loss had declined greatly within three weeks. In a pot experiment small L. perenne plants showed a marked increase in their N and P content during 30 days after a neighbouring large plant's shoot was removed, supporting rapid capture of nutrients lost from the detached roots. To investigate P loss from roots while attached to the shoot, L. perenne shoots were clipped every four days and 32P loss from the roots measured. After the third clip the rate of loss increased, eventually to more than four times that from the control plants.  相似文献   

10.
Evaluation of recent limnological changes at Lake Apopka   总被引:4,自引:0,他引:4  
Recent changes in submersed macrophytes and water quality variables have been offered as the strongest evidence that the current restoration program at Lake Apopka will be effective (Lowe et al., 2000); however, the new beds of submersed plants in Lake Apopka are found only on hard substrates on the fringes of the lake within 40 m of shore and are protected from waves by cattails (Typha spp.). They occupy only 0.02% of the lake area, and there is no indication that they can colonize the flocculent sediments that make up 90% of the lake area. There is no correlation between annual inputs of phosphorus and total phosphorus concentrations in the lake, and patterns of change in chlorophyll and other water quality variables do not follow changes in phosphorus loads. Rather than reflecting decreases in phosphorus loading, the recent changes could be related to the harvest of benthivorous fish or are just the normal fluctuations found in lakes that have not been perturbed. Regardless of the reason the macrophytes were lost in the 1940s, the new analyses confirm our previous findings that the high turbidities in Lake Apopka are due to the resuspension of sediments, and that the fluid mud cannot support the colonization of submersed aquatic macrophytes. Even without the fluid mud, the target phosphorus concentration of 55 mg m–3 is too high to bring about the restoration of the former macrophyte beds in the lake.  相似文献   

11.
The phytoplankton communities of eleven shallow lakes from Buenos Aires Province, Argentina, were studied seasonally from 1987 to 1989. Several physical and chemical properties were measured in each lake (pH, temperature, dissolved oxygen, transparency, nutrients), in order to interpret the structural and dynamic traits of the phytoplankton community.Important differences between the lakes studied were put in evidence by means of multivariate techniques (Cluster Analysis and PCA). The shallow lakes densely populated by macrophytes hosted lowest phytoplanktonic densities, with average values ranging from 690 to 16500 algae ml–1. High species diversities were observed in these lakes (4.0–4.8). Lakes less colonized by macrophytes had higher phytoplankton densities. In some of them important blooms of Cyanophyceae were recorded, with between 60 000 and 179 000 algae ml–1, and concomitant low diversities.The results of this investigation support the hypothesis that the phytoplankton community is strongly influenced by the macrophytes, by direct competition and/or by competition from periphytic algae associated with higher plants.  相似文献   

12.
Decomposition of emergent macrophytes in a Wisconsin marsh   总被引:6,自引:3,他引:3  
Loss of both dry weight and nutrients during decomposition was measured using litter bags, both in a natural marsh and in controlled experiments. At 348 days dry weight remains of Typha latifolia, Sparganium eurycarpum, Scirpus fluviatilis shoot litter in the marsh were 47.5, 26.9, 51.4% respectively, and for the rootrhizome litter were 59.1, 42.1, 27.8% (Scirpus > Sparganium > Typha). Under controlled conditions both temperature and type of water produced significant effect on dry weight loss of Typha leaves. Sterilization and antibiotics effectively inhibited the growth and activities of decomposers. Initial weight, N, P, Ca, and Mg losses resulted chiefly from leaching. These elements accumulated in spring and summer; N exhibited the highest accumulation. In the laboratory, N accumulation occurred within 15 days, as a result of microorganisms inhabiting the litter. Increase in P, Ca, Mg in later stages of decomposition were attributed to microorganisms, epiphytes, and precipitation from solution. High C : N ratios and relatively low P, Ca, Mg in original standing crop may be the cause of low herbivore consumption, whereas the relative increases in N, P, Ca, Mg in decomposed litter provide a more nutrient-rich substrate for detritivores. Much of the nutrient uptake in the annual cycle is via microbial and detritivore growth rather than by macrophyte producers.  相似文献   

13.
The variables affecting epiphyton biomass were examined in a sheltered, multispecies macrophyte bed in the St. Lawrence River. Alteration of light penetration, resulting from the presence of dense macrophytes forming a thick subsurface canopy, primarily determined epiphyton biomass. Seasonal decrease of water levels also coincided with major increases in biomass. Plant morphology was the next important variable influencing epiphytic biomass, whereas the contribution of other variables (sampling depth, macrophyte species, relative abundance of macrophytes, and temperature) was low. Groups of lowest epiphyte biomass (0.1–0.6 mg Chla g–1 DW) were defined by the combination of a low percentage of incident light (<13% surface light) and simple macrophyte stem types found below the macrophyte canopy. Highest epiphyte biomass (0.7–1.8 mg Chla g–1 DW) corresponded to samples collected in mid-July and August, under high irradiance (>20% surface light) and supported by ramified stems. Our results suggest that epiphyton sampling should be stratified according to the fraction of surface light intensity, macrophyte architecture, and seasonal water level variations, in decreasing order of influence.  相似文献   

14.
15.
Heavy metals in aquatic macrophytes drifting in a large river   总被引:1,自引:1,他引:0  
Macrophytes drifting throughout the water column in the Detroit River were collected monthly from May to October 1985 to estimate the quantities of heavy metals being transported to Lake Erie by the plants. Most macrophytes (80–92% by weight) drifted at the water surface. Live submersed macrophytes made up the bulk of each sample. The most widely distributed submersed macrophyte in the river, American wildcelery (Vallisneria americana), occurred most frequently in the drift. A total of 151 tonnes (ash-free dry weight) of macrophytes drifted out of the Detroit River from May to October. The drift was greatest (37 tonnes) in May. Concentrations of heavy metals were significantly higher in macrophytes drifting in the river than in those growing elsewhere in unpolluted waters. Annually, a maximum of 2 796 kg (eight heavy metals combined) were transported into Lake Erie by drifting macrophytes. The enrichment of all metals was remarkably high (range: 4 000 × to 161 000 × ) in macrophytes, relative to their concentration in water of the Detroit River. Detroit River macrophytes are thus a source of contaminated food for animals in the river and in Lake Erie.Contribution 734 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

16.
The applicability of a recently presented method (Stepwise Thermogravimetry, STG) to characterize biogenic organic matter (Kristensen 1990) was tested in comparative decomposition experiments. The initial microbial decay of pre-dried, fresh detritus from 6 different plant materials (2 macroalgae, 2 seagrasses, and 2 tree leaves) was examined for 70 days in aerobic seawater slurries. In addition, slurries of sediment detritus of low reactivity, representing the late stage of plant decay, were allowed to decompose aerobically and anaerobically for 200 days. Macroalgae lost 40–44% carbon over 70 days, whereas seagrasses lost 29–33% and tree leaves lost 0–8%. After a 3–5 days leaching phase, the temporal pattern of POC and PON loss from the plant detritus was exponential with higher rates for the former resulting in a 5–28% reduced C:N ratio. The Rp index decreased (<20%) during the initial leaching phase followed by a 30–40% increase to the end. Initial Rp was directly proportional to decay rate. POC loss in the anaerobic sediment slurry was 10% over the 200 day period (the aerobic was hampered by low pH). Preferential loss of PON caused a 30% increase in C:N ratio. The Rp index of sediment detritus also increased with 30%. Although the present laboratory experiments not fully simulate the natural environment, the Rp-C:N relationship obtained from the two slurry experiments can illustrate the general pattern of plant decay from fresh to refractory (humic) detritus. During initial aerobic decay, rapid leaching and microbial growth causes a decrease in both Rp and C:N (Rapid growth, phase 1). When all labile substrates have been consumed and the slower decay is controlled by enzymatic attack on particles with an associated production of humic compounds and accumulation of nitrogen rich bacterial cell remains, Rp increases and C:N decreases (Slow growth, phase 2). Later, when condensed humic compounds have accumulated, decay ceases. Most carbon is now bound in forms which are of low availability to bacteria and a preferential mineralization of nitrogen occurs; both Rp and C:N increases (Condenzation, phase 3).  相似文献   

17.
It has been argued that waterfowl and fish may threaten growth of submerged macrophytes, especially in spring during the early growth phase when plant biomass is low. A small reduction of biomass at that time might delay growth or decrease subsequent productivity. We investigated the impact of waterfowl and large fish on the spring growth of fennel pondweed (Potamogeton pectinatusL.) by employing an exclosure experiment in the macrophyte-dominated clear-water Lake Mogan, Turkey. Birds and large fish were excluded from eight plots and both in situvegetation and macrophytes kept in pots were compared to eight open plots. Also, to investigate the effect of periphyton on plant growth it was removed from half of the pot plants. Exclusion of waterfowl and fish may decrease predation on macroinvertebrates, which in turn may affect periphyton, and macrophyte growth, why macroinvertebrates also were sampled. Waterfowl density was high (15–70 ind. of coot, Fulica atraL. ha–1), abundance of submerged plants was also high with a surface coverage of 70–80%, and benthivorous fish were present, mainly tench, (Tinca tincaL.) and carp, (Cyprinus carpioL.). Exclusion of waterfowl and large fish did not significantly affect the spring growth of pondweed; neither plants growing in situnor kept in pots. Removal of periphyton from the plants in the pots did not favour growth. The density of macroinvertebrates was not affected by the exclusion of waterfowl and large fish, but it was positively related to aboveground biomass of fennel pondweed. We suggest that even if waterfowl and large fish are in high densities, their effect on fennel pondweed spring growth in lakes with abundant submerged vegetation, such as Lake Mogan, is low.  相似文献   

18.
Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i   总被引:8,自引:0,他引:8  
Allison SD  Vitousek PM 《Oecologia》2004,141(4):612-619
Physiological traits that contribute to the establishment and spread of invasive plant species could also have impacts on ecosystem processes. The traits prevalent in many invasive plants, such as high specific leaf areas, rapid growth rates, and elevated leaf nutrient concentrations, improve litter quality and should increase rates of decomposition and nutrient cycling. To test for these ecosystem impacts, we measured initial leaf litter properties, decomposition rates, and nutrient dynamics in 11 understory plants from the Hawaiian islands in control and nitrogen + phosphorus fertilized plots. These included five common native species, four of which were ferns, and six aggressive invasive species, including five angiosperms and one fern. We found a 50-fold variation in leaf litter decay rates, with natives decaying at rates of 0.2–2.3 year–1 and invaders at 1.4–9.3 year–1. This difference was driven by very low decomposition rates in native fern litter. Fertilization significantly increased the decay rates of leaf litter from two native and two invasive species. Most invasive litter types lost nitrogen and phosphorus more rapidly and in larger quantities than comparable native litter types. All litter types except three native ferns lost nitrogen after 100 days of decomposition, and all litter types except the most recalcitrant native ferns lost >50% of initial phosphorus by the end of the experiment (204–735 days). If invasive understory plants displace native species, nutrient cycling rates could increase dramatically due to rapid decomposition and nutrient release from invasive litter. Such changes are likely to cause a positive feedback to invasion in Hawaii because many invasive plants thrive on nutrient-rich soils.  相似文献   

19.
20.
Summary The decomposition of litter and roots ofChenopodium album, Desmostachya bipinnata and mixed grass samples for a period of 402 days and ofDichanthium annulatum andSesbania bispinosa for a period of 278 days was studied in a tropical grassland. Litter bags positioned at midcanopy height, soil surface and at five cm depth below the soil surface and root bags placed at 5, 15, 25 and 35 cm depths belowground were used. For the total study period, the cumulative weight loss in litter bags was: Chenopodium=76–100%; Desmostachya=33–98%; Dichanthium=26–96%; mixed grass=43–99% and Sesbania=25–99%. The weight loss in root bags was: Chenopodium=93–100%; Desmostachya=47–56%; Dichanthium=71–87%; mixed grass=61–82%; Sesbania=87–100%. The nature of plant species affected decomposition rates. The position of litter/root bags also affected the decomposition rates. The mean relative decomposition rates of litter as well as of root material were found to be highest in rainy season and lowest in winter months. Rainfall, particularly the frequency of rainfall, was an important factor affecting decomposition rates. The litter species characterized by highest concentration of nitrogen, ash, acid detergent cell wall component and lowest concentration of carbon, cellulose and lignin, decomposed rapidly. In the case of roots, the material having high nitrogen, carbon, cellulose and ash content and low C/N ratio and lignin content decomposed rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号