首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many stimuli cause intracellular concentration oscillations of second messengers or metabolites, which, in turn, may encode information in their amplitudes and frequencies. We now test the hypothesis that synergistic cellular responses to dual cytokine exposure correlate with cross-talk between metabolic signaling pathways of leukocytes. Polarized RAW264.7 macrophages and human neutrophils and monocytes exhibited NAD(P)H autofluorescence oscillation periods of congruent with20 s. IFN-gamma tripled the NAD(P)H oscillatory amplitude for these cells. Although IL-6 had no effect, incubation of cells with IFN-gamma and IL-6 increased both oscillatory amplitude and frequency. Parallel changes were noted after treatment with IFN-gamma and IL-2. However, IL-1beta and TNF-alpha did not display frequency doubling with or without IFN-gamma exposure. To determine whether frequency doubling required complete IFN-gamma signaling or simply metabolic amplitude modulation, an electric field was applied to cells at NAD(P)H troughs, which has been shown to enhance NAD(P)H amplitudes. Electric field application led to frequency doubling in the presence of IL-6 or IL-2 alone, suggesting that amplitude modulation is crucial to synergism. Because NADPH participates in electron trafficking to NO, we tested NO production during cytokine exposure. Although IL-6 and IL-2 alone had no effect, IFN-gamma plus IL-6 and IFN-gamma plus IL-2 enhanced NO release in comparison to IFN-gamma treatment alone. When NO production was examined for single cells, it incrementally increased with the same phase and period as NAD(P)H. We suggest that amplitude and frequency modulation of cellular metabolic oscillations contribute to intracellular signaling synergy and entrain NO production.  相似文献   

2.
Trophoblasts are fetal epithelial cells that form an interface between mother and offspring. To evaluate their anti-inflammatory capacity, we tested the hypothesis that trophoblasts deactivate neutrophils using single-cell assays. Several biophysical (Ca2+ and NAD(P)H oscillation frequency) and physiological (oxidant production) markers of activated neutrophils revert to a nonactivated phenotype as activated cells make contact with trophoblasts. Indistinguishable results were obtained using syncytiotrophoblasts and in experiments using trophoblasts and neutrophils from the same mother to recapitulate the semiallogeneic system. These changes suggest reduced hexose monophosphate shunt (HMS) activity. We discovered that two metabolic regulatory points, glucose transport and HMS enzyme trafficking, are affected by trophoblasts. This restriction in HMS activity deactivates neutrophils, thereby limiting oxidative DNA damage within trophoblasts.  相似文献   

3.
A model of the oscillatory metabolism of activated neutrophils   总被引:1,自引:0,他引:1       下载免费PDF全文
We present a two-compartment model to explain the oscillatory behavior observed experimentally in activated neutrophils. Our model is based mainly on the peroxidase-oxidase reaction catalyzed by myeloperoxidase with melatonin as a cofactor and NADPH oxidase, a major protein in the phagosome membrane of the leukocyte. The model predicts that after activation of a neutrophil, an increase in the activity of the hexose monophosphate shunt and the delivery of myeloperoxidase into the phagosome results in oscillations in oxygen and NAD(P)H concentration. The period of oscillation changes from >200 s to 10-30 s. The model is consistent with previously reported oscillations in cell metabolism and oxidant production. Key features and predictions of the model were confirmed experimentally. The requirement of the hexose monophosphate pathway for 10 s oscillations was verified using 6-aminonicotinamide and dexamethasone, which are inhibitors of glucose-6-phosphate dehydrogenase. The role of the NADPH oxidase in promoting oscillations was confirmed by dose-response studies of the effect of diphenylene iodonium, an inhibitor of the NADPH oxidase. Moreover, the model predicted an increase in the amplitude of NADPH oscillations in the presence of melatonin, which was confirmed experimentally. Successful computer modeling of complex chemical dynamics within cells and their chemical perturbation will enhance our ability to identify new antiinflammatory compounds.  相似文献   

4.
Neutrophil activation plays integral roles in host tissue damage and resistance to infectious diseases. As glucose uptake and NADPH availability are required for reactive oxygen metabolite production by neutrophils, we tested the hypothesis that pathological glucose levels (>or=12 mM) are sufficient to activate metabolism and reactive oxygen metabolite production in normal adherent neutrophils. We demonstrate that elevated glucose concentrations increase the neutrophil's metabolic oscillation frequency and hexose monophosphate shunt activity. In parallel, substantially increased rates of NO and superoxide formation were observed. However, these changes were not observed for sorbitol, a nonmetabolizable carbohydrate. Glucose transport appears to be important in this process as phloretin interferes with the glucose-specific receptor-independent activation of neutrophils. However, LY83583, an activator of glucose flux, promoted these changes at 1 mM glucose. The data suggest that at pathophysiologic concentrations, glucose uptake by mass action is sufficient to activate neutrophils, thus circumventing the normal receptor transduction mechanism. To enable us to mechanistically understand these dynamic metabolic changes, mathematical simulations were performed. A model for glycolysis in neutrophils was created. The results indicated that the frequency change in NAD(P)H oscillations can result from the activation of the hexose monophosphate shunt, which competes with glycolysis for glucose-6-phosphate. Experimental confirmation of these simulations was performed by measuring the effect of glucose concentrations on flavoprotein autofluorescence, an indicator of the rate of mitochondrial electron transport. Moreover, after prolonged exposure to elevated glucose levels, neutrophils return to a "nonactivated" phenotype and are refractile to immunologic stimulation. Our findings suggest that pathologic glucose levels promote the transient activation of neutrophils followed by the suppression of cell activity, which may contribute to nonspecific tissue damage and increased susceptibility to infections, respectively.  相似文献   

5.
The effect of arachidonic acid on the metabolic activity and chemiluminesence of canine neutrophils was investigated to gain further insight into its role in the neutrophil metabolic burst. Arachidonic acid was found to stimulate metabolic activity and luminol-augmented chemiluminescence. The increased metabolic activity was detected by both oxygen uptake measurements and assays of hexose monophosphate shunt activity. An inhibitor of lipoxygenase and cyclooxygenase,5, 8, 11, 14-eicosatetraynoic acid prevented the hexose monophosphate shunt response to arachidonic acid. Aspirin or indomethacin, blockers of cyclooxygenase, inhibited chemiluminescence but failed to block the metabolic response to arachidonic acid. Since superoxide dismutase and 2-deoxyglucose, a blocker of glucose metabolism, inhibited the chemiluminescent response of neutrophils to arachidonic acid, it is likely that oxygen radicals produced via the hexose monophosphate shunt are required for the chemiluminescent reaction. In addition it was found that inhibition of cyclooxygenase activity blocked chemiluminescence but not the metabolic stimulation induced by sodium fluoride, suggesting that the chemiluminescence stimulated by sodium fluoride is associated with endogenous fatty acid stores. From these studies it can be concluded that arachidonic acid products of the cyclooxygenase pathway do not play a significant role in the metabolic response of neutrophils when arachidonic acid or sodium fluoride is the stimulant while the lipoxygenase pathway appears to be involved. The metabolic response is not linked to the chemical reaction that causes neutrophil, chemiluminesence, although the chemiluminescent response depends on hexose monophosphate shunt activity and presumably the oxygen radicals that ultimately result from that process.  相似文献   

6.
Superoxide release by zymosan-stimulated rat Kupffer cells in vitro   总被引:9,自引:0,他引:9  
Kupffer cells were isolated from pronase-perfused rat livers and were maintained as a monolayer culture in a state of high purity and viability. Immediately after contact with zymosan particles, O2 uptake of the Kupffer cells increased fivefold; about 50% of the net oxygen consumed was accounted for as superoxide released into the medium. Concomitantly, a transient burst of luminol-dependent chemiluminescence, an increased activity of NAD(P)H oxidase and a stimulation of the flow of glucose through the hexose monophosphate shunt were observed. Chemiluminescence and O2- production were almost completely inhibited by superoxide dismutase and iodoacetate. Zymosan-induced chemiluminescence was not inhibited in the presence of the non-penetrating thiol reagents, 5,5'-dithio-bis-2-nitrobenzoate and iodoacetyl-sepharose. Iodoacetate acted on the cytosolic glucose-6-phosphate dehydrogenase rather than on NAD(P)H oxidase of the cell membrane.  相似文献   

7.
The hexose monophosphate (HMP) shunt acts as an essential component of cellular metabolism in maintaining carbon homeostasis. The HMP shunt comprises two phases viz. oxidative and nonoxidative, which provide different intermediates for the synthesis of biomolecules like nucleotides, DNA, RNA, amino acids, and so forth; reducing molecules for anabolism and detoxifying the reactive oxygen species during oxidative stress. The HMP shunt is significantly important in the liver, adipose tissue, erythrocytes, adrenal glands, lactating mammary glands and testes. We have researched the articles related to the HMP pathway, its metabolites and disorders related to its metabolic abnormalities. The literature for this paper was taken typically from a personal database, the Cochrane database of systemic reviews, PubMed publications, biochemistry textbooks, and electronic journals uptil date on the hexose monophosphate shunt. The HMP shunt is a tightly controlled metabolic pathway, which is also interconnected with other metabolic pathways in the body like glycolysis, gluconeogenesis, and glucuronic acid depending upon the metabolic needs of the body and depending upon the biochemical demand. The HMP shunt plays a significant role in NADPH2 formation and in pentose sugars that are biosynthetic precursors of nucleic acids and amino acids. Cells can be protected from highly reactive oxygen species by NADPH 2. Deficiency in the hexose monophosphate pathway is linked to numerous disorders. Furthermore, it was also reported that this metabolic pathway could act as a therapeutic target to treat different types of cancers, so treatments at the molecular level could be planned by limiting the synthesis of biomolecules required for proliferating cells provided by the HMP shunt, hence, more experiments still could be carried out to find additional discoveries.  相似文献   

8.
Neutrophils exhibit intrinsic sinusoidal metabolite concentration oscillations of 3 min in resting cells and an additional approximately 10- or 20-s oscillation in migrating/adhering cells. To better understand immune complex (IC)-mediated leukocyte activation, we have studied neutrophil metabolic oscillations in the presence of ICs either with or without fixed complement. Using a microscope photometer we quantitated NAD(P)H autofluorescence oscillations. Cells exposed to ICs exhibited metabolic oscillation periods of approximately 12 s in the absence of complement and approximately 22 s in the presence of complement opsonization. To determine if the effects could be associated with C3 deposition, we used ICs opsonized with only C3 or only C1 and C4. Untreated ICs, heat-inactivated complement-treated ICs, and C1,C4-treated ICs trigger rapid metabolic oscillations, as do fMLP and yeast; in contrast, ICs treated with full complement or C3 alone did not affect NAD(P)H oscillations in comparison to controls. The induction of higher frequency (approximately 10 s) NAD(P)H oscillations by ICs could be blocked by addition of anti-FcgammaRII, but not FcgammaRIII mAb fragments, suggesting the participation of FcgammaRII in cellular metabolic responses to ICs. Parallel changes in the frequencies of oxidant release and pericellular proteolysis were found for all of these stimuli. Thus, immune complex composition affects both intracellular metabolic signals and extracellular functional oscillations. We suggest that complement attenuates the phlogistic potential of ICs by reducing the frequency of cytoplasmic NAD(P)H oscillations.  相似文献   

9.
The effective fall in cytosolic reduced glutathione levels in intact red cells exposed to exogenous oxidant stress in the form of Fe2+, H2O2 and ascorbate was caused by H2O2 alone. Relatively high concentrations of Fe2+ had no contributory effect on the oxidizing capacity of H2O2. Ascorbate, at physiological levels, showed no protection whereas glucose was totally protective. Since glucose, via hexose monophosphate shunt, is the only source of reducing equivalent in red cells, the NADPH/NADP+ redox role in the diminution of intracellular reduced glutathione.  相似文献   

10.
The role of sulfhydryls in the protection of human polymorphonuclear neutrophils against extracellular oxidant attack was investigated by simultaneously exposing polymorphonuclear neutrophils to the thiol-oxidizing agent diamide and the oxidant-generating system xanthine-xanthine oxidase. Neither diamide nor the oxidants generated by the xanthine-xanthine oxidase system alone impaired the burst in chemiluminescence, hexose monophosphate shunt activity or formate oxidation normally seen during polymorphonuclear neutrophil phagocytosis. Incubation of the polymorphonuclear neutrophils simultaneously with diamide and xanthine-xanthine oxidase markedly impaired polymorphonuclear neutrophil phagocytosis, hexose monophosphate shunt activity, chemiluminescence and formate oxidation. Although the polymorphonuclear neutrophils exposed to diamide and xanthine-xanthine oxidase did not respond to a variety of phagocytizable stimuli, trypan blue exclusion was normal and hexose monophosphate shunt activity could be stimulated by diamide. The damaging effect of the diamide xanthine-xanthine oxidase system could be blocked by the addition of superoxide dismutase or catalase, but not by hydroxyl radical or singlet oxygen scavengers. We hypothesize that an unidentified population of thiols may play a role in protecting the polymorphonuclear neutrophil from endogenously derived oxidants.  相似文献   

11.
The role of sulfhydryls in the protection of human polymorphonuclear neutrophils against extracellular oxidant attack was investigated by simultaneously exposing polymorphonuclear neutrophils to the thiol-oxidizing agent diamide and the oxidant-generating system xanthine-xanthine oxidase. Neither diamide nor the oxidants generated by the xanthine-xanthine oxidase system alone impaired the burst in chemiluminescence, hexose monophosphate shunt activity or formate oxidation normally seen during polymorphonuclear neutrophil phagocytosis. Incubation of the polymorphonuclear neutrophils simultaneously with diamide and xanthine-xanthine oxidase markedly impaired polymorphonuclear neutrophil phagocytosis, hexose monophosphate shunt activity, chemiluminescence and formate oxidation. Although the polymorphonuclear neutrophils exposed to diamide and xanthine-xanthine oxidase did not respond to a variety of phagocytizable stimuli, trypan blue exclusion was normal and hexose monophosphate shunt activity could be stimulated by diamide. The damaging effect of the diamide xanthine-xamthine oxidase system could be blocked by the addition of superoxide dismutase or catalase, but not by hydroxyl radical or singlet oxygen scavengers. We hypothesize that an unidentified population of thiols may play a role in protecting the polymorphonuclear neutrophil from endogenously derived oxidants.  相似文献   

12.
Cell-free preparations of Chlorella pyrenoidosa Chick, van Niel's strain, were assayed for oxidative enzymes, utilizing isotopic and spectrophotometric techniques. The enzyme activity of heterotrophic and autotrophic cells was compared. The study was divided into categories, one concerned with the spectrophotometric detection of enzymes involved in the initial reactions of glycolysis and the hexose monophosphate shunt, and the other with the direct oxidation of glucose as compared with that oxidized via glycolysis. The reduction of pyridine nucleotides in crude extracts was studied with glucose, glucose-6-phosphate, 6-phosphogluconate, and fructose-1-6-diphosphate as substrates. Enzymes detected in both heterotrophic and autotrophic cells were hexokinase, fructose-diphosphate-aldolase, NAD-linked 3-phosphoglyceraldchyde dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and a NADP-linked 3-phosphoglyceraldchyde dehydrogenase. In addition to isotopic studies designed to make an appraisal of the hexose monophosphate shunt, a comparison of the rate of reduction of NADP by glucose-6-phosphate and 6-phosphogluconate in relation to the reduction of NAD by 3-phosphoglyceraldehyde was made in light- and dark-grown cells. The rate of reduction of NADP appeared to be lowered in the light-grown cells, suggesting, as did also the isotopic studies, that the hexose monophosphate shunt is less active in autotrophic metabolism than in heterotrophic metabolism.  相似文献   

13.
We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-Kv1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K+ and Ca2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K+ channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca2+ signaling. Electric fields enhanced Ca2+ spike amplitude and triggered formation of a second traveling Ca2+ wave. Mibefradil blocked Ca2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.  相似文献   

14.
The differential metabolic effects of three nicotinamide analogs, 6-aminonicotinamide, 3-aminobenzamide, and 5-methylnicotinamide, were analyzed in mitogen-stimulated preparations of human T lymphocytes. Mitogen stimulation with the phorbol ester TPA and a monoclonal antibody to the T3 cell surface antigen caused an increase in cellular NAD and ATP levels and a marked increase in glucose metabolism as demonstrated by an increase in cellular levels of glucose 6-phosphate and a sevenfold increase in radioactive CO2 formation from [l-14C]glucose. 6-Aminonicotinamide had drastic inhibitory effects on the mitogen-stimulated increases in NAD and ATP levels as well as on the metabolism of glucose. Treatment of the mitogen-stimulated cells with 6-aminonicotinamide also caused a marked increase in cellular levels of 6-phosphogluconate, suggesting inhibition of the hexose monophosphate shunt at 6-phosphogluconate dehydrogenase. Radioactive CO2 formation from [6-14C]glucose showed that metabolism through the tricarboxylic acid cycle was not used to compensate for the inhibition of the hexose monophosphate shunt pathway. Treatment of cells with 3-aminobenzamide had the opposite effect of 6-aminonicotinamide in that cellular NAD levels increased, presumable due to inhibition of poly(ADP-ribose) polymerase. 3-Aminobenzamide did not interfere with ATP or glucose 6-phosphate levels and did not cause significant elevations of 6-phosphogluconate. Thus, 6-aminonicotinamide appears to have direct inhibitory effects on the synthesis of both pyridine nucleotides and poly(ADP-ribose), whereas 3-aminobenzamide has its major inhibitory effect on poly(ADP-ribose) synthesis. 5-Methylnicotinamide also interferes with the mitogen-stimulated increase in NAD levels but not as effectively as 6-aminonicotinamide. The alterations in pyridine nucleotide metabolism resulting from treatment with these nicotinamide analogs can produce drastic and diverse alterations in pathways of glucose utilization and energy generation.  相似文献   

15.
De novo cholesterol synthesis and hexose monophosphate (HMP) shunt were studied in rat kidney stimulated to proliferate by a single administration of lead nitrate. Lead-treated rat kidneys showed an increase in DNA synthesis, as measured by [3H]thymidine incorporation starting at 18 h and with a maximum at 24 h. Renal DNA synthesis was preceded by an increase in de novo cholesterol synthesis and an enhancement in the activity of the HMP shunt, as indicated by increased activity of G6PDH and 6PGDH. These findings indicate that enhancement of cholesterol synthesis and of the HMP shunt is closely associated with the active proliferative process induced in the kidney by treatment with lead nitrate.  相似文献   

16.
Vascular NAD(P)H oxidase-derived reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) have emerged as important molecules in the pathogenesis of atherosclerosis, hypertension, and diabetic vascular complications. Additionally, myeloperoxidase (MPO), a transcytosable heme protein that is derived from leukocytes, is also believed to play important roles in the above-mentioned inflammatory vascular diseases. Previous studies have shown that MPO-induced vascular injury responses are H2O2 dependent. It is well known that MPO can use leukocyte-derived H2O2; however, it is unknown whether the vascular-bound MPO can use vascular nonleukocyte oxidase-derived H2O2 to induce vascular injury. In the present study, ANG II was used to stimulate vascular NAD(P)H oxidases and increase their H2O2 production in the vascular wall, and vascular dysfunction was used as the vascular injury parameter. We demonstrated that vascular-bound MPO has sustained activity in the vasculature. MPO could use the vascular NAD(P)H oxidase-derived H2O2 to produce hypochlorus acid (HOCl) and its chlorinating species. More importantly, MPO derived HOCl and chlorinating species amplified the H2O2-induced vascular injury by additional impairment of endothelium-dependent relaxation. HOCl-modified low-density lipoprotein protein (LDL), a specific biomarker for the MPO-HOCl-chlorinating species pathway, was expressed in LDL and MPO-bound vessels with vascular NAD(P)H oxidase-derived H2O2. MPO-vascular NAD(P)H oxidase-HOCl-chlorinating species may represent a common pathogenic pathway in vascular diseases and a new mechanism involved in exacerbation of vascular diseases under inflammatory conditions.  相似文献   

17.
Two-photon excitation fluorescence microscopy (TPEFM) permits the investigation of the topology of intercellular events within living animals. TPEFM was used to monitor the distribution of mitochondrial reduced nicotinamide adenine dinucleotide (NAD(P)H) in murine skeletal muscle in vivo. NAD(P)H fluorescence emission was monitored (~460 nm) using 710–720 nm excitation. High-resolution TPEFM images were collected up to a depth of 150 μm from the surface of the tibialis anterior muscle. The NAD(P)H fluorescence images revealed subcellular structures consistent with subsarcolemmal, perivascular, intersarcomeric, and paranuclear mitochondria. In vivo fiber typing between IIB and IIA/D fibers was possible using the distribution and content of mitochondria from the NAD(P)H fluorescence signal. The intersarcomeric mitochondria concentrated at the Z-line in the IIB fiber types resulting in a periodic pattern with a spacing of one sarcomere (2.34 ± 0.17 μm). The primary inner filter effects were nearly equivalent to water, however, the secondary inner filter effects were highly significant and dynamically affected the observed emission frequency and amplitude of the NAD(P)H fluorescence signal. These data demonstrate the feasibility, and highlight the complexity, of using NAD(P)H TPEFM in skeletal muscle to characterize the topology and metabolic function of mitochondria within the living mouse.  相似文献   

18.
A proton nuclear magnetic resonance technique is demonstrated for ascertaining the real-time contribution of the hexose monophosphate shunt to glucose metabolism in the intact incubated rabbit lens. This measurement requires incubation of the tissue in medium supplemented with [1-13C]glucose, and depends on the presence of the 13C label in the methyl position of lactate which creates satellite resonances by way of 13C - 1H spin-spin scalar coupling. The assumptions required to make the measurement are presented. For lenses maintained under control conditions, a basal level corresponding to 5% hexose monophosphate shunt activity was determined. An eight-fold increase in activity was observed under conditions known to stimulate the shunt.  相似文献   

19.
Polymorphonuclear phagocytes have been shown to undergo marked alteration in oxidative metabolism during phagocytosis. These alterations, collectively known as the "respiratory burst", include increased glucose oxidation through the hexose monophosphate shunt (1), increased oxygen consumption (1), and increased superoxide (O-2)3 (2) and H2O2 production (3). Similar metabolic events have also been shown to occur in the rabbit alveolar macrophage (AM). There is consistent evidence that the macrophage undergoes increased oxygen consumption (4-6) and hexose monophosphate shunt activity (4-9) upon phagocytosis. There are conflicting data, however, concerning the ability of the macrophage to produce O-2. Some studies suggest that macrophages are incapable of producing measurable amounts of O-2 upon phagocytosis (7, 10-12). Other studies, however, suggest that macrophages are indeed capable of producing substantial amounts of O-2 during phagocytosis (8, 13-15). This study was designed to resolve the discrepancies in the literature concerning O-2 production in macrophages.  相似文献   

20.
Summary In uniformly labeled logarithmic-phase cells of Thraustochytrium roseum grown in isotopic glucose, 85% of the respiratory CO2 was derived from endogenous reserves and only 15% was contributed by exogenous glucose. Experiments with asymetrically labeled glucose showed that the main portion of metabolic CO2 came from carbon 1 of the glucose molecule, suggesting that the hexose monophosphate shunt is a major pathway for glucose dissimilation in the fungus. The presence of several enzymes of the hexose monophosphate shunt, the Embden-Meyerhof and glyoxylate pathways, and the tricarboxylic acid cycle were demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号