首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage migration inhibitory factor (MIF) is a cytokine that was first described as an inhibitor of the random migration of monocytes and macrophages and has since been proposed to have a number of immune and catalytic functions. One of the functions assigned to MIF is that of a tautomerase that interconverts the enol and keto forms of phenylpyruvate and (p-hydroxyphenyl)pyruvate and converts D-dopachrome, a stereoisomer of naturally occurring L-dopachrome, to 5,6-dihydroxyindole-2-carboxylic acid. The physiological significance of the MIF enzymatic activity is unclear. The three-dimensional structure of MIF is strikingly similar to that of two microbial enzymes (4-oxalocrotonate tautomerase and 5-carboxymethyl-2-hydroxymuconate isomerase) that otherwise share little sequence identity with MIF. MIF and these two enzymes have an invariant N-terminal proline that serves as a catalytic base. Here we report a new biological function for MIF, as an inhibitor of monocyte chemoattractant protein 1- (MCP-1-) induced chemotaxis of human peripheral blood monocytes. We find that MIF inhibition of chemotaxis does not occur at the level of the CC chemokine receptor for MCP-1, CCR2, since MIF does not alter the binding of (125)I-MCP-1 to monocytes. The role of MIF enzymatic activity in inhibition of monocyte chemotaxis and random migration was studied with two MIF mutants in which the N-terminal proline was replaced with either a serine or a phenylalanine. Both mutants remain capable of inhibiting monocyte chemotaxis and random migration despite significantly reduced or no phenylpyruvate tautomerase activity. These data suggest that this enzymatic activity of MIF does not play a role in its migration inhibiting properties.  相似文献   

2.
J B Lubetsky  M Swope  C Dealwis  P Blake  E Lolis 《Biochemistry》1999,38(22):7346-7354
Macrophage migration inhibitory factor (MIF) is an important immunoregulatory molecule with a unique ability to suppress the anti-inflammatory effects of glucocorticoids. Although considered a cytokine, MIF possesses a three-dimensional structure and active site similar to those of 4-oxalocrotonate tautomerase and 5-carboxymethyl-2-hydroxymuconate isomerase. Moreover, a number of catalytic activities have been defined for MIF. To gain insight into the role of catalysis in the biological function of MIF, we have begun to characterize the catalytic activities in more detail. Here we report the crystal structure of MIF complexed with p-hydroxyphenylpyruvate, a substrate for the phenylpyruvate tautomerase activity of MIF. The three binding sites for p-hydroxyphenylpyruvate in the MIF trimer lie at the interface between two subunits. The substrate interacts with Pro-1, Lys-32, and Ile-64 from one subunit and Tyr-95 and Asn-97 from an adjacent subunit. Pro-1 is positioned to function as a catalytic base. There is no functional group that polarizes the alpha-carbonyl of the substrate to weaken the adjacent C-H bond. Mutation of Pro-1 to glycine substantially reduces the catalytic activity. The insertion of an alanine between Pro-1 and Met-2 essentially abolishes activity. Structural studies of these mutants define a source of the reduced activity and provide insight into the mechanism of the catalytic reaction.  相似文献   

3.
The macrophage migration inhibitory factor (MIF) is a cytokine that shares a common structural architecture and catalytic strategy with three isomerases: 4-oxalocrotonate tautomerase, 5-carboxymethyl-2-hydroxymuconate isomerase, and D-dopachrome tautomerase. A highly conserved N-terminal proline acts as a base-acid during the proton transfer reaction catalyzed by these enzymes. Such unusual catalytic strategy appears to be possible only due to the N-terminal proline pK(a) shifted to 5.0-6.0 units. Mutations of this residue result in a significant decrease of the catalytic activity of MIF. Two hypotheses have been proposed to explain the catalytic inefficiency of MIF: the lower basicity of primary amines with regard to secondary ones and the increased flexibility resulting from the replacement of a proline by residues like glycine. To investigate that, we have performed molecular dynamics simulations of MIF wild-type and its mutant P1G, as well as calculated the protonation properties of several mutant forms. It was found that the N-terminal glycine does not show larger fluctuations compared to proline, but the former residue is more exposed to the solvent throughout the simulations. The apparent pK(a) of these residues displays very little change (as expected from the structural rigidity of MIF) and is not significantly affected by the surrounding ionizable residues. Instead, the hydrophobic character of the active site seems to be the main factor in determining the pKa of the N-terminal residue and the catalytic efficiency of MIF.  相似文献   

4.
Cytokines are the molecular messengers of the vertebrate immune system, coordinating the local and systemic immune responses to infective organisms. We report here functional and structural data on cytokine-like proteins from a eukaryotic pathogen. Two homologues of the human cytokine macrophage migration inhibitory factor (MIF) have been isolated from the parasitic nematode Brugia malayi. Both molecules (Bm-MIF-1 and Bm-MIF-2) show parallel functions to human MIF. They are chemotactic for human monocytes and activate them to produce IL-8, TNF-alpha, and endogenous MIF. The human and nematode MIF homologues share a tautomerase enzyme activity, which is in each case abolished by the mutation of the N-terminal proline residue. The crystal structure of Bm-MIF-2 at 1.8-A resolution has been determined, revealing a trimeric assembly with an inner pore created by beta-stranded sheets from each subunit. Both biological activity and crystal structure reveal remarkable conservation between a human cytokine and its parasite counterpart despite the considerable phylogenetic divide among these organisms. The strength of the similarity implies that MIF-mediated pathways play an important role in nematode immune evasion strategies.  相似文献   

5.
Macrophage migration inhibitory factor (MIF) is an important immunoregulatory protein that has been implicated in several inflammatory diseases. MIF also has a phenylpyruvate tautomerase (PPT) activity, the role of which remains elusive in these biological activities. The acetylene compound, 2-oxo-4-phenyl-3-butynoate (2-OPB), has been synthesized and tested as a potential irreversible inhibitor of its enzymatic activity. Incubation of the compound with MIF results in the rapid and irreversible loss of the PPT activity. Mass spectral analysis established that the amino-terminal proline, previously implicated as a catalytic base in the PPT-catalyzed reaction, is the site of covalent modification. Inactivation of the PPT activity likely occurs by a Michael addition of Pro-1 to C-4 of the inhibitor. Attempts to crystallize the inactivated complex to confirm the structure of the adduct on the covalently modified Pro-1 by X-ray crystallography were not successful. Nor was it possible to unambiguously interpret electron density observed in the active sites of the native crystals soaked with the inhibitor. This may be due to crystal packing in that the side chain of Glu-16 from an adjacent trimer occupies one active site. However, this crystal contact may be partially responsible for the high-resolution quality of these MIF crystals. Nonetheless, because MIF is a member of the tautomerase superfamily, a group of structurally homologous proteins that share a beta-alpha-beta structural motif and a catalytic Pro-1, 2-OPB may find general use as a probe of tautomerase superfamily members that function as PPTs.  相似文献   

6.
Isothiocyanates are a class of phytochemicals with widely reported anti-cancer and anti-inflammatory activity. However, knowledge of their activity at a molecular level is limited. The objective of this study was to identify biological targets of phenethyl isothiocyanate (PEITC) using an affinity purification approach. An analogue of PEITC was synthesized to enable conjugation to a solid-phase resin. The pleiotropic cytokine macrophage migration inhibitory factor (MIF) was the major protein captured from cell lysates. Site-directed mutagenesis and mass spectrometry showed that PEITC covalently modified the N-terminal proline residue of MIF. This resulted in complete loss of catalytic tautomerase activity and disruption of protein conformation, as determined by impaired recognition by a monoclonal antibody directed to the region that receptors and interacting proteins bind to MIF. The conformational change was supported by in silico modeling. Monoclonal antibody binding to plasma MIF was disrupted in humans consuming watercress, a major dietary source of PEITC. The isothiocyanates have significant potential for development as MIF inhibitors, and this activity may contribute to the biological properties of these phytochemicals.  相似文献   

7.
Macrophage migration inhibitory factor (MIF) is a cytokine with broad regulatory functions in innate immunity. MIF belongs to the few cytokines displaying catalytic activities, i.e. MIF has a Pro2-dependent tautomerase and a Cys-Ala-Leu-Cys (CALC) cysteine-based thiol-protein oxidoreductase activity. Previous studies have addressed the roles of the catalytic site residues and the C-terminus. The two activities have not been directly compared. Here we report on the N-terminal mutational analysis and minimization of MIF and on a dissection of the two catalytic activities by comparing mutants P2AMIF, Delta4MIF, Delta5MIF, Delta6MIF, Delta7MIF, Delta8MIF, and Delta10MIF with the cysteine mutants of MIF. As N-terminal deletion was predicted to interfere with protein structure due to disruption of the central beta sheet, it was surprising that deletion of up to six N-terminal residues resulted in normally expressed proteins with wild-type conformation. Strikingly, such mutants exhibited full MIF-specific immunologic activity. While mutation of Pro2 eliminated tautomerase activity, the CALC cysteine residues had no influence on this activity. However, mutant C81SMIF, which otherwise has full biologic activity, only had 32% tautomerase activity. Deletion of four N-terminal residues did not interfere with insulin reduction by MIF. By contrast, reduction of 2-hydroxyethyldisulfide (HED) was markedly affected by N-terminal manipulation, with P2AMIF and Delta2MIF exhibiting 40% activity, and Delta4MIF completely failing to reduce HED. This study constitutes the first comparison of the two catalytic activities of MIF and should assist in understanding the molecular links between the catalytic and immunologic activities of this cytokine and in providing guidelines for N-terminal protein minimization.  相似文献   

8.
Macrophage migration inhibitory factor (MIF) is an immunoregulatory protein that is a potential therapeutic target for a number of inflammatory diseases. Evidence exists that an unexpected catalytic active site of MIF may have a biological function. To gain further insight into the role of the catalytic active site, a series of mutational, structural, and biological activity studies were performed. The insertion of an alanine between Pro-1 and Met-2 (PAM) abolishes a non-physiological catalytic activity, and this mutant is defective in the in vitro glucocorticoid counter-regulatory activity of MIF. The crystal structure of MIF complexed to (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an inhibitor of MIF d-dopachrome tautomerase activity, reveals that ISO-1 binds to the same position of the active site as p-hydroxyphenylpyruvic acid, a substrate of MIF. ISO-1 inhibits several MIF biological activities, further establishing a role for the catalytic active site of MIF.  相似文献   

9.
The Escherichia coli Fpg protein is a DNA glycosylase/AP lyase. It removes, in DNA, oxidized purine residues, including the highly mutagenic C8-oxo-guanine (8-oxoG). The catalytic mechanism is believed to involve the formation of a transient Schiff base intermediate formed between DNA containing an oxidized residue and the N-terminal proline of the Fpg protein. The importance and the role of this proline upon the various catalytic activities of the Fpg protein was examined by targeted mutagenesis, resulting in the construction of three mutant Fpg proteins: Pro-2 --> Gly (FpgP2G), Pro-2 --> Thr (FpgP2T), and Pro-2 --> Glu (FpgP2E). The formamidopyrimidine DNA glycosylase activities of FpgP2G and FpgP2T were comparable and accounted for 10% of the wild-type activity. FpgP2G and FpgP2T had barely detectable 8-oxoG-DNA glycosylase activity and produced minute Schiff base complex with 8-oxoG/C DNA. FpgP2G and FpgP2T mutants did not cleave a DNA containing preformed AP site but readily produced Schiff base complex with this substrate. FpgP2E was completely inactive in all the assays. The binding constants of the different mutants when challenged with a duplex DNA containing a tetrahydrofuran residue were comparable. The mutant Fpg proteins barely or did not complement in vivo the spontaneous transitions G/C --> T/A in E. coli BH990 (fpg mutY) cells. These results show the mandatory role of N-terminal proline in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo as well as in its AP lyase activity upon preformed AP site but less in the 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine-DNA glycosylase activity.  相似文献   

10.
Macrophage migration inhibitory factor (MIF) is an important player in the regulation of the inflammatory response. Elevated plasma MIF is found in sepsis, arthritis, cystic fibrosis and atherosclerosis. Immunomodulatory activities of MIF include the ability to promote survival and recruitment of inflammatory cells and to amplify pro-inflammatory cytokine production. MIF has an unusual nucleophilic N-terminal proline with catalytic tautomerase activity. It remains unclear whether tautomerase activity is required for MIF function, but small molecules that inhibit tautomerase activity also inhibit the pro-inflammatory activities of MIF. A prominent feature of the acute inflammatory response is neutrophil activation and production of reactive oxygen species, including myeloperoxidase (MPO)-derived hypochlorous acid and hypothiocyanous acid. We hypothesized that MPO-derived oxidants would oxidize the N-terminal proline of MIF and alter its biological activity. MIF was exposed to hypochlorous acid and hypothiocyanous acid and the oxidative modifications on MIF were examined by LC-MS/MS. Imine formation and carbamylation was observed on the N-terminal proline in response to MPO-dependent generation of hypochlorous and hypothiocyanous acid, respectively. These modifications led to a complete loss of tautomerase activity. However, modified MIF still increased CXCL-8/IL-8 production by peripheral blood mononuclear cells (PBMCs) and blocked neutrophil apoptosis, indicating that tautomerase activity is not essential for these biological functions. Pre-treatment of MIF with hypochlorous acid protected the protein from covalent modification by the MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP). Therefore, oxidant generation at inflammatory sites may protect MIF from inactivation by more disruptive electrophiles, including drugs designed to target the tautomerase activity of MIF.  相似文献   

11.
Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases.  相似文献   

12.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is considered an attractive therapeutic target in multiple inflammatory and autoimmune disorders. In addition to its known biologic activities, MIF can also function as a tautomerase. Several small molecules have been reported to be effective inhibitors of MIF tautomerase activity in vitro. Herein we employed a robust activity-based assay to identify different classes of novel inhibitors of the catalytic and biological activities of MIF. Several novel chemical classes of inhibitors of the catalytic activity of MIF with IC50 values in the range of 0.2–15.5 μm were identified and validated. The interaction site and mechanism of action of these inhibitors were defined using structure-activity studies and a battery of biochemical and biophysical methods. MIF inhibitors emerging from these studies could be divided into three categories based on their mechanism of action: 1) molecules that covalently modify the catalytic site at the N-terminal proline residue, Pro1; 2) a novel class of catalytic site inhibitors; and finally 3) molecules that disrupt the trimeric structure of MIF. Importantly, all inhibitors demonstrated total inhibition of MIF-mediated glucocorticoid overriding and AKT phosphorylation, whereas ebselen, a trimer-disrupting inhibitor, additionally acted as a potent hyperagonist in MIF-mediated chemotactic migration. The identification of biologically active compounds with known toxicity, pharmacokinetic properties, and biological activities in vivo should accelerate the development of clinically relevant MIF inhibitors. Furthermore, the diversity of chemical structures and mechanisms of action of our inhibitors makes them ideal mechanistic probes for elucidating the structure-function relationships of MIF and to further determine the role of the oligomerization state and catalytic activity of MIF in regulating the function(s) of MIF in health and disease.  相似文献   

13.
The macrophage migration inhibitory factor (MIF) is a cytokine that is structurally similar to certain isomerases and for which multiple immune and catalytic roles have been proposed. Different catalytic activities have been reported for MIF, yet the exact mechanism by which MIF acts is not completely known. As a tautomerase, the enzyme uses a general acid-base mechanism of proton transfer in which the amino-terminal proline has been shown to function as the catalytic base. We report the results of molecular docking simulations of macrophage migration inhibitory factor with three substrates, D-dopachrome, L-dopachrome methyl ester and p-(hydroxyphenyl)pyruvate. Electrostatic pK(a) predictions were also performed for the free and complexed forms of the enzyme. The predicted binding mode of p-(hydroxyphenyl)pyruvate is in agreement with the recently published X-ray structure. A model for the binding mode of D-dopachrome and L-dopachrome methyl ester to MIF is proposed which offers insights into the catalytic mechanism of D-dopachrome tautomerase activity of MIF. The proposed catalytic mechanism is further supported by the pK(a) predictions, which suggest that residue Lys32 acts as the general acid for the enzymatic catalysis of D-dopachrome.  相似文献   

14.
Macrophage migration inhibitory factor (MIF), an immunoregulatory protein, exhibits a phenylpyruvate tautomerase (PPT) activity. The catalytic mechanism of this activity has recently attracted attention in an effort to determine whether there is a relationship between the PPT activity and the role of MIF in various immune and inflammatory processes. One of the active site residues is lysine-32, which is postulated to play two roles: it assists in substrate binding through an interaction with a carboxylate oxygen at C-1 of phenylpyruvate, and it may be partially responsible for lowering the pK(a) of the catalytic base, Pro-1. The role of Lys-32 has been investigated by changing it to an alanine and an arginine and determining the kinetic parameters, the stereoselectivity, the competitive inhibition, and the pH dependence of the resulting K32A- and K32R-catalyzed reactions. For the K32R mutant, these properties are mostly comparable to those determined for the wild type with two exceptions. There is a modest decrease in the stereoselectivity of the reaction and in the binding affinity of the competitive inhibitor, (E)-2-fluoro-p-hydroxycinnamate. These differences are likely due to the increased steric bulk of arginine. For the K32A mutant, there are 11- and 12-fold decreases in k(cat) and k(cat)/K(m), respectively, using phenylenolpyruvate. Part of the decrease in activity can be attributed to the observed increase of 1. 3 units in the pK(a) of Pro-1. It was also found that the loss of the electrostatic interaction did not significantly affect the stereoselectivity of the K32A-catalyzed reaction, although it did result in a decrease in the binding affinity of the competitive inhibitor. The combination of these results indicates that the primary function of Lys-32 in the PPT activity of MIF is to lower the pK(a) of Pro-1. The interactions responsible for the stereoselectivity of the PPT activity were further delineated by examining the wild type- and K32A-catalyzed reactions with an alternate substrate, 2-hydroxy-2,4-pentadienoate, in which the phenyl group of phenylenolpyruvate is replaced with a double bond. The effect of this substitution is moderate as evidenced by the observation that the ketonization of 2-hydroxy-2,4-pentadienoate by the wild type protein is more stereoselective than the K32R-catalyzed ketonization of phenylenolpyruvate but not as stereoselective as the K32A-catalyzed ketonization of phenylenolpyruvate. However, the low degree of stereoselectivity observed for the K32A-catalyzed reaction indicates that an electrostatic interaction between the protein and 2-hydroxy-2, 4-pentadienoate is now crucial.  相似文献   

15.
Malaria, caused by Plasmodium falciparum and related parasites, is responsible for millions of deaths each year, mainly from complications arising from the blood stages of its life cycle. Macrophage migration inhibitory factor (MIF), a protein expressed by the parasite during these stages, has been characterized in mammals as a cytokine involved in a broad spectrum of immune responses. It also possesses two catalytic activities, a tautomerase and an oxidoreductase, though the physiological significance of neither reaction is known. Here, we have determined the crystal structure of MIF from two malaria parasites, Plasmodium falciparum and Plasmodium berghei at 2.2 Å and 1.8 Å, respectively. The structures have an α/β fold and each reveals a trimer, in agreement with the results of analytical ultracentrifugation. We observed open and closed active sites, these being distinguished by movements of proline‐1, the catalytic base in the tautomerase reaction. These states correlate with the covalent modification of cysteine 2 to form a mercaptoethanol adduct, an observation confirmed by mass spectrometry. The Plasmodium MIFs have a different pattern of conserved cysteine residues to the mammalian MIFs and the side chain of Cys58, which is implicated in the oxidoreductase activity, is buried. This observation and the evident redox reactivity of Cys2 suggest quite different oxidoreductase characteristics. Finally, we show in pull‐down assays that Plasmodium MIF binds to the cell surface receptor CD74, a known mammalian MIF receptor implying that parasite MIF has the ability to interfere with, or modulate, host MIF activity through a competitive binding mechanism.  相似文献   

16.
The cytokine macrophage migration inhibitory factor (MIF) is inducibly secreted by immune cells and certain other cell types to critically participate in the regulation of the host immune response. However, MIF does not contain a N-terminal signal sequence and the mechanism of MIF secretion is unknown. Here we show in a model of endotoxin-stimulated THP-1 monocytes that MIF does not enter the endoplasmatic reticulum and that MIF secretion is not inhibited by monensin or brefeldin A, demonstrating that MIF secretion occurs via a non-classical export route. Glyburide and probenicide but not other typical inhibitors of non-classical protein export strongly block MIF secretion, indicating that the export pathway of MIF involves an ABCA1 transporter.  相似文献   

17.
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family and controls essential processes such as inflammation, cell differentiation, and apoptosis. JNK signalling is triggered by extracellular signals such as cytokines and environmental stresses. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine with chemokine-like functions in leukocyte recruitment and atherosclerosis. MIF promotes MAPK signalling through ERK1/2, while it can either activate or inhibit JNK phosphorylation, depending on the cell type and underlying stimulation context. MIF activities are mediated by non-cognate interactions with the CXC chemokine receptors CXCR2 and CXCR4 or by ligation of CD74, which is the cell surface expressed form of the class II invariant chain. ERK1/2 signalling stimulated by MIF is dependent on CD74, but the receptor pathway involved in MIF activation of the JNK pathway is unknown. Here we comprehensively characterize the stimulatory effect of MIF on the canonical JNK/c-Jun/AP-1 pathway in fibroblasts and T cell lines and identify the upstream signalling components. Physiological concentrations of recombinant MIF triggered the phosphorylation of JNK and c-Jun and rapidly activated AP-1. In T cells, MIF-mediated activation of the JNK pathway led to upregulated gene expression of the inflammatory chemokine CXCL8. Activation of JNK signalling by MIF involved the upstream kinases PI3K and SRC and was found to be dependent on CXCR4 and CD74. Together, these data show that the CXCR4/CD74/SRC/PI3K axis mediates a rapid and transient activation of the JNK pathway as triggered by the inflammatory cytokine MIF in T cells and fibroblasts.  相似文献   

18.
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  相似文献   

19.
The tautomerase superfamily consists of structurally homologous proteins that are characterized by a β-α-β fold and a catalytic amino-terminal proline. 4-Oxalocrotonate tautomerase (4-OT) family members have been identified and categorized into five subfamilies on the basis of multiple sequence alignments and the conservation of key catalytic and structural residues. Representative members from two subfamilies have been cloned, expressed, purified, and subjected to kinetic and structural characterization. The crystal structure of DmpI from Helicobacter pylori (HpDmpI), a 4-OT homolog in subfamily 3, has been determined to high resolution (1.8 Å and 2.1 Å) in two different space groups. HpDmpI is a homohexamer with an active site cavity that includes Pro-1, but lacks the equivalent of Arg-11 and Arg-39 found in 4-OT. Instead, the side chain of Lys-36 replaces that of Arg-11 in a manner similar to that observed in the trimeric macrophage migration inhibitory factor (MIF), which is the title protein of another family in the superfamily. The electrostatic surface of the active site is also quite different and suggests that HpDmpI might prefer small, monoacid substrates. A kinetic analysis of the enzyme is consistent with the structural analysis, but a biological role for the enzyme remains elusive. The crystal structure of DmpI from Archaeoglobus fulgidus (AfDmpI), a 4-OT homolog in subfamily-4, has been determined to 2.4 Å resolution. AfDmpI is also a homohexamer, with a proposed active site cavity that includes Pro-1, but lacks any other residues that are readily identified as catalytic ones related to 4-OT activity. Indeed, the electrostatic potential of the active site differs significantly in that it is mostly neutral, in contrast to the usual electropositive features found in other 4-OT family members, suggesting that AfDmpI might accommodate hydrophobic substrates. A kinetic analysis has been carried out, but does not provide any clues about the type of reaction the enzyme might catalyze.  相似文献   

20.
4-Oxalocrotonate tautomerase (4-OT) catalyzes the isomerization of beta,gamma-unsaturated enones to their alpha,beta-isomers. The enzyme is part of a plasmid-encoded pathway, which enables bacteria harboring the plasmid to use various aromatic hydrocarbons as their sole sources of carbon and energy. Among isomerases and enzymes in general, 4-OT is unusual for two reasons: it has one of the smallest known monomer sizes (62 amino acids) and the amino-terminal proline functions as the catalytic base. In addition to Pro-1, three other residues (Arg-11, Arg-39, and Phe-50) have been identified as critical catalytic residues by kinetic analysis, site-directed mutagenesis, chemical synthesis, NMR, and crystallographic studies. Arginine-39 functions as the general acid catalyst (assisted by an ordered water molecule) in the reaction while Arg-11 plays a role in substrate binding and facilitates catalysis by acting as an electron sink. Finally, the hydrophobic nature of the active site, which lowers the pK(a) of Pro-1 to approximately 6.4 and provides a favorable environment for catalysis, is largely maintained by Phe-50. 4-OT is also the title enzyme of the 4-OT family of enzymes. The chromosomal homologues in this family are composed of monomers ranging in size from 61 to 79 amino acids, which code a beta-alpha-beta structural motif. The homologues all retain Pro-1 and generally have an aromatic or hydrophobic amino acid at the Phe-50 position. Characterization of representative members has uncovered mechanistic and structural diversity. A new activity, a trans-3-chloroacrylic acid dehalogenase, has been identified in addition to the previously known tautomerase and isomerase activities. Two new structures have also been found, along with the 4-OT hexamer. The dehalogenase functions as a heterohexamer while the Escherichia coli homologue, designated YdcE, functions as a dimer. Moreover, both 4-OT and the Bacillus subtilis homologue, designated YwhB, exhibit low-level dehalogenase activity. Amplification of this activity could have produced the full-fledged dehalogenase. The sum of these observations indicates that Nature uses the beta-alpha-beta structural motif as a building block in a variety of manners to create new enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号