共查询到20条相似文献,搜索用时 15 毫秒
1.
Alderwick LJ Dover LG Seidel M Gande R Sahm H Eggeling L Besra GS 《Glycobiology》2006,16(11):1073-1081
The arabinogalactan (AG) of Corynebacterianeae is a critical macromolecule that tethers mycolic acids to peptidoglycan, thus forming a highly impermeable cell wall matrix termed the mycolyl-arabinogalactan peptidoglycan complex (mAGP). The front line anti-tuberculosis drug, ethambutol (Emb), targets the Mycobacterium tuberculosis and Corynebacterium glutamicum arabinofuranosyltransferase Mt-EmbA, Mt-EmbB and Cg-Emb enzymes, respectively, which are responsible for the biosynthesis of the arabinan domain of AG. The substrate utilized by these important glycosyltransferases, decaprenylmonophosphoryl-D-arabinose (DPA), is synthesized via a decaprenylphosphoryl-5-phosphoribose (DPPR) synthase (UbiA), which catalyzes the transfer of 5-phospho-ribofuranose-pyrophosphate (pRpp) to decaprenol phosphate to form DPPR. Glycosyl compositional analysis of cell walls extracted from a C. glutamicum::ubiA mutant revealed a galactan core consisting of alternating beta(1-->5)-Galf and beta(1-->6)-Galf residues, completely devoid of arabinan and a concomitant loss of cell-wall-bound mycolic acids. In addition, in vitro assays demonstrated a complete loss of arabinofuranosyltransferase activity and DPA biosynthesis in the C. glutamicum::ubiA mutant when supplemented with p[14C]Rpp, the precursor of DPA. Interestingly, in vitro arabinofuranosyltransferase activity was restored in the C. glutamicum::ubiA mutant when supplemented with exogenous DP[14C]A substrate, and C. glutamicum strains deficient in ubiA, emb, and aftA all exhibited different levels of DPA biosynthesis. 相似文献
2.
Actinobacillus actinomycetemcomitans is a Gram-negative coccobacillus that can cause various forms of severe periodontitis and other nonoral infections in human patients. The serotype a-specific polysaccharide antigen of A. actinomycetemcomitans contains solely 6-deoxy-D-talose and its O-2 acetylated modification. This polysaccharide is synthesized from the donor GDP-6-deoxy-D-talose with the relevant talosylation enzyme(s). In the synthesis of GDP-6- deoxy-D-talose, GDP-D-mannose is first converted by GDP-mannose-4,6-dehydratase (GMD) to GDP-4-keto-6-deoxy-D-mannose and then reduced to GDP-6-deoxy-D-talose by GDP-6-deoxy-D-talose synthetase (GTS). In this study, we cloned and overexpressed in Escherichia coli the A. actinomycetemcomitans GTS enzyme responsible for the synthesis of GDP-6-deoxy-D-talose. The recombinant A. actinomycetemcomitans GTS enzyme expressed in E. coli converted the GDP-4-keto-6-deoxy-intermediate to a novel GDP-deoxyhexose. The synthesized GDP-deoxyhexose was shown to be GDP-6-deoxy-D-talose by HPLC, MALDI-TOF MS, and NMR spectroscopy. The functional expression of gts provides another enzymatically defined pathway for the synthesis of GDP-deoxyhexoses, which can be used as donors for the corresponding glycosyltransferases. 相似文献
3.
Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H- and 13C-NMR. They were hydroxycinnamic acid amides: N-trans-caffeoyl-l-DOPA or clovamide, N-trans-p-coumaroyl-l-tyrosine or deoxiclovamide, and N-trans-caffeoyl-l-tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues. 相似文献
4.
dTDP-6-deoxy-d-allose, an unusual deoxysugar, has been identified as an intermediate in the mycinose biosynthetic pathway of several macrolide antibiotics. In order to characterize the biosynthesis of this deoxysugar, we have cloned and heterologously overexpressed gerK1 in Escherichia coli BL21 (DE3) cells. This gene encodes for a protein with the putative function of a dTDP-4-keto-6-deoxyglucose reductase, which appears to be involved in the dihydrochalcomycin (GERI-155) biosynthesis evidenced by Streptomyces sp KCTC 0041BP. Our results revealed that GerK1 exhibited a specific reductive effect on the 4-keto carbon of dTDP-4-keto-6-deoxy-d-allose, with the hydroxyl group in an axial configuration at the C3 position only. The enzyme catalyzed the conversion of dTDP-4-keto-6-deoxyglucose to dTDP-6-deoxy-beta-D-allose, according to the results of an in vitro coupled enzyme assay, in the presence of GerF (dTDP-4-keto-6-deoxyglucose 3-epimerase). The product was isolated, and its stereochemistry was determined via nuclear magnetic resonance analysis. 相似文献
5.
Recent research has implicated T1R1/T1R3 as the primary taste receptor in mammals for detecting L-amino acids, including L-monosodium glutamate (MSG) and L-alanine. Previous behavioral studies with rodents found only minimal evidence that these two substances share perceptual qualities, but those studies did not control for the taste of sodium associated with MSG. This study used several behavioral methods to compare the perceptual qualities of MSG and L-alanine in rats, using amiloride (a sodium channel blocker) to reduce the sodium component of MSG taste. Detection thresholds of L-alanine in rats ranged between 0.4 and 2.5 mM, with or without amiloride added, which are similar to threshold estimates for MSG. Conditioned taste aversion (CTA) found that rats showed strong cross-generalization of CTA between MSG and L-alanine when mixed with amiloride, indicating the two substances have similar perceptual qualities. Discrimination methods showed that rats easily discriminated between L-alanine and MSG unless the cue function of sodium was reduced. The discrimination became significantly more difficult at concentrations < 100 mM when amiloride was added to all stimuli and became even more difficult when NaCl was also added to L-alanine solutions to match the sodium concentrations of MSG. These results indicate that, perceptually, MSG and L-alanine have quite similar taste qualities and support the hypothesis that these two L-amino acids activate a common taste receptor. The differences in perceptual qualities also suggest separate afferent processing of one or both substances may also be involved. 相似文献
6.
De Souza GA Oliveira PS Trapani S Santos AC Rosa JC Laure HJ Faça VM Correia MT Tavares GA Oliva G Coelho LC Greene LJ 《Glycobiology》2003,13(12):961-972
Carbohydrate-protein interactions play a key role in many biological processes. Cramoll is a lectin purified from Cratylia mollis seeds that is taxonomically related to concanavalin A (Con A). Although Cramoll and Con A have the same monosaccharide specificity, they have different glycoprotein binding profiles. We report the primary structure of Cramoll, determined by Edman degradation and mass spectrometry and its 1.77 A crystallographic structure and compare it with the three-dimensional structure of Con A in an attempt to understand how differential binding can be achieved by similar or nearly identical structures. We report here that Cramoll consists of 236 residues, with 82% identity with Con A, and that its topological architecture is essentially identical to Con A, because the Calpha positional differences are below 3.5 A. Cramoll and Con A have identical binding sites for MealphaMan, Mn2+, and Ca2+. However, we observed six substitutions in a groove adjacent to the extended binding site and two in the extended binding site that may explain the differences in binding of oligosaccharides and glycoproteins between Cramoll and Con A. 相似文献
7.
The morphology, anatomy and histology of mature green vanilla beans were examined by light and transmission electron microscopy. Beans have a triangular cross-section with a central cavity containing seeds. Each angle is lined with tubular cells, or papillae, while the cavity sides consist of placental laminae. The epicarp and endocarp are formed by one or two layers of very small cells, while the mesocarp contains large, highly vacuolarized cells, the cytoplasm being restricted to a thin layer along the cell walls. The radial distributions of glucovanillin and beta-glucosidase activity, measured on p-nitrophenyl-beta-glucopyranoside and glucovanillin, are superimposable and show how beta-glucosidase activity increases from the epicarp towards the placental zone, whereas glucovanillin is exclusively located in the placentae and papillae. Subcellular localization of beta-glucosidase activity was achieved by incubating sections of vanilla beans in a buffer containing 5-bromo-4-chloro-3-indolyl-beta-d-glucopyranoside as a substrate. Activity was observed in the cytoplasm (and/or the periplasm) of mesocarp and endocarp cells, with a more diffuse pattern observed in the papillae. A possible mechanism for the hydrolysis of glucovanillin and release of the aromatic aglycon vanillin involves the decompartmentation of cytoplasmic (and/or periplasmic) beta-glucosidase and vacuolar glucovanillin. 相似文献
8.
The role of short-chain fatty acids in the host-seeking behaviour of Triatoma infestans larvae was investigated using a locomotion compensator. Several short-chain fatty acids were tested alone over a wide range of doses, or in combination with L-lactic acid (L-LA; 100 microg). Bugs showed no attractive response to single carboxylic acids, but when L-LA was added to airstreams carrying specific intensities of either propionic (C3; 100 microg), butyric (C4; 1 microg) or valeric acid (C5; 1 microg), these mixtures elicited an attractive response, evincing a synergistic effect. No orientation response was observed when caproic acid (C6) was offered with L-LA at the doses tested. Two blends were created: (1) C3, C4 and C5 combined at the effective doses when added with L-LA [C3C4C5 (1)], and (2) C3, C4 and C5 combined at a third of those intensities [C3C4C5 (2)]. Both blends were tested alone, with L-LA (100 microg), with a sub-threshold concentration of CO(2) (300 p.p.m. above the ambient level), and combined with both compounds together. Oriented responses of bugs were only observed with the blend (2) added with L-LA and with the combination of this lure with CO(2). This last combination evoked a behavioural response similar in intensity to that induced by a live mouse. 相似文献
9.
We investigate the effects of measurement error on the estimationof nonparametric variance functions. We show that either ignoringmeasurement error or direct application of the simulation extrapolation,SIMEX, method leads to inconsistent estimators. Nevertheless,the direct SIMEX method can reduce bias relative to a naiveestimator. We further propose a permutation SIMEX method thatleads to consistent estimators in theory. The performance ofboth the SIMEX methods depends on approximations to the exactextrapolants. Simulations show that both the SIMEX methods performbetter than ignoring measurement error. The methodology is illustratedusing microarray data from colon cancer patients. 相似文献
10.
We have shown previously that surfactant protein D (SP-D) binds and agglutinates Streptococcus pneumoniae in vitro. In this study, the role of SP-D in innate immunity against S. pneumoniae was investigated in vivo, by comparing the outcome of intranasal infection in surfactant protein D deficient (SP-D-/-) to wildtype mice (SP-D+/+). Deficiency of SP-D was associated with enhanced colonisation and infection of the upper and lower respiratory tract and earlier onset and longer persistence of bacteraemia. Recruitment of neutrophils to inflammatory sites in the lung was similar in both strains mice in the first 24 hrs post-infection, but different by 48 hrs. T cell influx was greatly enhanced in SP-D-/- mice as compared to SP-D+/+ mice. Our data provides evidence that SP-D has a significant role to play in the clearance of pneumococci during the early stages of infection in both pulmonary sites and blood. 相似文献
11.
GDP-D-mannose pyrophosphorylase (GMP) is an important enzyme in the Smirnoff-Wheeler's pathway for the biosynthesis of ascorbic acid (AsA) in plants. We have reported recently that the expression of the acerola (Malpighia glabra) GMP gene, designated MgGMP, correlates with the AsA content of the plant. The acerola plant has very high levels of AsA relative to better studied model plants such as Arabidopsis. Here we found that the GMP mRNA levels in acerola are higher than those from Arabidopsis and tomato. Also, the transient expression of the uidA reporter gene in the protoplasts of Nicotiana tabacum cultures showed the MgGMP gene promoter to have higher activity than the cauliflower mosaic virus 35S and Arabidopsis GMP promoters. The AsA content of transgenic tobacco plants expressing the MgGMP gene including its promoter was about 2-fold higher than that of the wild type. 相似文献
12.
Surfactant protein A (SP-A), the most abundant protein in the lung alveolar surface, has multiple activities, including surfactant-related functions. SP-A is required for the formation of tubular myelin and the lung surface film. The human SP-A locus consists of two functional SP-A genes, SP-A1 and SP-A2, with a number of alleles characterized for each gene. We have found that the human in vitro expressed variants, SP-A1 (6A2) and SP-A2 (1A0), and the coexpressed SP-A1/SP-A2 (6A2/1A0) protein have a differential influence on the organization of phospholipid monolayers containing surfactant protein B (SP-B). Lipid films containing SP-B and SP-A2 (1A0) showed surface features similar to those observed in lipid films with SP-B and native human SP-A. Fluorescence images revealed the presence of characteristic fluorescent probe-excluding clusters coexisting with the traditional lipid liquid-expanded and liquid-condensed phase. Images of the films containing SP-B and SP-A1 (6A2) showed different distribution of the proteins. The morphology of lipid films containing SP-B and the coexpressed SP-A1/SP-A2 (6A2/1A0) combined features of the individual films containing the SP-A1 or SP-A2 variant. The results indicate that human SP-A1 and SP-A2 variants exhibit differential effects on characteristics of phospholipid monolayers containing SP-B. This may differentially impact surface film activity. 相似文献
13.
Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants 总被引:2,自引:0,他引:2
Paradiso A Berardino R de Pinto MC Sanità di Toppi L Storelli MM Tommasi F De Gara L 《Plant & cell physiology》2008,49(3):362-374
Durum wheat plants (Triticum durum cv Creso) were grown in thepresence of cadmium (0–40 µM) and analysed after3 and 7 d for their growth, oxidative stress markers, phytochelatins,and enzymes and metabolites of the ascorbate (ASC)–glutathione(GSH) cycle. Cd exposure produced a dose-dependent inhibitionof growth in both roots and leaves. Lipid peroxidation, proteinoxidation and the decrease in the ascorbate redox state indicatethe presence of oxidative stress in the roots, where H2O2 overproductionand phytochelatin synthesis also occurred. The activity of theASC–GSH cycle enzymes significantly increased in roots.Consistently, a dose-dependent accumulation of Cd was evidentin these organs. On the other hand, no oxidative stress symptomsor phytochelatin synthesis occurred in the leaves; where, atleast during the time of our analysis, the levels of Cd remainedirrelevant. In spite of this, enzymes of the ASC–GSH cyclesignificantly increased their activity in the leaves. When ASCbiosynthesis was enhanced, by feeding plants with its last precursor,L-galactono--lactone (GL), Cd uptake was not affected. On theother hand, the oxidative stress induced in the roots by theheavy metal was alleviated. GL treatment also inhibited theCd-dependent phytochelatin biosynthesis. These results suggestthat different strategies can successfully cope with heavy metaltoxicity. The changes that occurred in the ASC–GSH cycleenzymes of the leaves also suggest that the whole plant improvedits antioxidant defense, even in those parts which had not yetbeen reached by Cd. This precocious increase in the enzymesof the ASC–GSH cycle further highlight the tight regulationand the relevance of this cycle in the defense against heavymetals. 相似文献
14.
Prema B. Rapuri J.C. Gallagher Zafar Nawaz 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):368
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells. 相似文献
15.
Effect of surfactant protein A on the physical properties and surface activity of KL4-surfactant 下载免费PDF全文
Sáenz A Cañadas O Bagatolli LA Sánchez-Barbero F Johnson ME Casals C 《Biophysical journal》2007,92(2):482-492
SP-A, the major protein component of pulmonary surfactant, is absent in exogenous surfactants currently used in clinical practice. However, it is thought that therapeutic properties of natural surfactants improve after enrichment with SP-A. The objective of this study was to determine SP-A effects on physical properties and surface activity of a new synthetic lung surfactant based on a cationic and hydrophobic 21-residue peptide KLLLLKLLLLKLLLLKLLLLK, KL(4). We have analyzed the interaction of SP-A with liposomes consisting of DPPC/POPG/PA (28:9:5.6, w/w/w) with and without 0.57 mol % KL(4) peptide. We found that SP-A had a concentration-dependent effect on the surface activity of KL(4)-DPPC/POPG/PA membranes but not on that of an animal-derived LES. The surface activity of KL(4)-surfactant significantly improved after enrichment with 2.5-5 wt % SP-A. However, it worsened at SP-A concentrations > or =10 wt %. This was due to the fluidizing effect of supraphysiological SP-A concentrations on KL(4)-DPPC/POPG/PA membranes as determined by fluorescence anisotropy measurements, calorimetric studies, and confocal fluorescence microscopy of GUVs. High SP-A concentrations caused disappearance of the solid/fluid phase coexistence of KL(4)-surfactant, suggesting that phase coexistence might be important for the surface adsorption process. 相似文献
16.
17.
Multilayer structures in lipid monolayer films containing surfactant protein C: effects of cholesterol and POPE 下载免费PDF全文
The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased compressibility at medium surface pressure (10-30 mN/m). An increasing amount of liquid-expanded domains can be visualized by means of fluorescence light microscopy in lung surfactant monolayers after addition of either cholesterol or POPE. At surface pressures of 50 mN/m, protrusions are formed which differ in size and shape as a function of the content of cholesterol or POPE, but only if SP-C is present. Low amounts of cholesterol (10 mol %) lead to an increasing number of protrusions, which also grow in size. This is interpreted as a stabilizing effect of cholesterol on bilayers formed underneath the monolayer. Extreme amounts of cholesterol (30 mol %), however, cause an increased monolayer rigidity, thus preventing reversible multilayer formation. In contrast, POPE, as a nonbilayer lipid thought to stabilize the edges of protrusions, leads to more narrow protrusions. The lateral extension of the protrusions is thereby more influenced than their height. 相似文献
18.
1,25-Dihydroxyvitamin D3, the physiologically active form of vitamin D3, exerts its functions through a receptor-mediated mechanism and plays an important role in the cell differentiation. This study investigated the effects of 1,25-dihydroxyvitamin D3 on the proliferation and differentiation of porcine preadipocyte. Stromal-vascular cells containing preadipocytes were prepared from dorsal subcutaneous adipose tissue of approximately 3-day-old Chinese male crossbred pigs. After confluence, the differentiation was induced by transferrin, dexamethasone and insulin for 2 days, and then subsequently cultured for 6 days. The cells were treated with 1,25-dihydroxyvitamin D3 during the induction of differentiation (the early phase of differentiation) or throughout the differentiation period. The terminal differentiation markers, such as glycerol-3-phosphate dehydrogenase activity and lipid accumulation were measured during the process of cultures. The treatment with 1,25-dihydroxyvitamin D3 severely affected the induction of all differentiation markers throughout the differentiation period. 1,25-Dihydroxyvitamin D3 suppressed the expression of peroxisome proliferator-activated receptor gamma mRNA and interfered with the induction of retinoid X receptor alpha mRNA. The mRNAs of the adipogenesis-related genes, lipoprotein lipase, stearoyl-CoA desaturase, phosphoenolpyruvate carboxykinase, glycerol-3-phosphate dehydrogenase and glucose transporter 4 were reduced when 1,25-dihydroxyvitamin D3 was added into differentiation medium. Also, 1,25-dihydroxyvitamin D3 inhibited preadipocyte differentiation in dose-dependent manner. These results suggested that 1,25-dihydroxyvitamin D3 inhibited porcine preadipocyte differentiation through suppressing PPAR gamma and RXR alpha mRNA expressions and then down regulating the expression of adipogenesis-related genes. 相似文献
19.
Yasuhiro Serizawa Rieko OshimaIchika Sakon Kazuto KitaniAyumi Goto Satoshi TsudaTatsuya Hayashi 《Biochemical and biophysical research communications》2014
Salicylate (SAL) has been recently implicated in the antidiabetic effect in humans. We assessed whether 5′-AMP-activated protein kinase (AMPK) in skeletal muscle is involved in the effect of SAL on glucose homeostasis. Rat fast-twitch epitrochlearis and slow-twitch soleus muscles were incubated in buffer containing SAL. Intracellular concentrations of SAL increased rapidly (<5 min) in both skeletal muscles, and the Thr172 phosphorylation of the α subunit of AMPK increased in a dose- and time-dependent manner. SAL increased both AMPKα1 and AMPKα2 activities. These increases in enzyme activity were accompanied by an increase in the activity of 3-O-methyl-d-glucose transport, and decreases in ATP, phosphocreatine, and glycogen contents. SAL did not change the phosphorylation of insulin receptor signaling including insulin receptor substrate 1, Akt, and p70 ribosomal protein S6 kinase. These results suggest that SAL may be transported into skeletal muscle and may stimulate AMPK and glucose transport via energy deprivation in multiple muscle types. Skeletal muscle AMPK might be part of the mechanism responsible for the metabolic improvement induced by SAL. 相似文献
20.
Synaptic plasticity is a phenomenon contributing to changes in the efficacy of neuronal transmission. These changes are widely believed to be a major cellular basis for learning and memory. Protein phosphorylation is a key biochemical process involved in synaptic plasticity that operates through a tight balance between the action of protein kinases and protein phosphatases (PPs). Although the majority of research in this field has concentrated primarily on protein kinases, the significant role of PPs is becoming increasingly apparent. This review examines one such phosphatase, PP1, and highlights recent advances in the understanding of its intervention in synaptic and structural plasticity and the mechanisms of learning and memory. 相似文献