首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Steady state concentrations of individual RNA sequences in poly(A) nuclear and cytoplasmic RNA populations of Drosophila Kc cells were determined using cloned cDNA fragments. These cDNAs represent poly(A) RNA sequences of different abundance in the cytoplasm of Kc cells, but their steady state concentrations in poly(A) hnRNA was always lower. Of ten different sequences analysed, eight showed some four-fold lower concentration in hnRNA mRNA, two were underrepresented in hnRNA relative to the others. The obvious clustering of mRNA/hnRNA ratios is discussed in relation to sequence complexity and turnover rates of these RNA populations.  相似文献   

3.
The distribution of the sequences coding for ceruloplasmin (CP) in rat liver heterogeneous nuclear RNA (hnRNA) was studied using highly specific CP cDNA as a hybridization probe. The content of CP-coding sequences in poly(A)-containing and poly(A)-free subfractions of hnRNA was shown to be respectively 1 and 27 equivalents of CP mRNA molecule per one hepatocyte. The gel electrophoresis of hnRNA under strongly denaturing conditions with the subsequent transfer of RNA to diazobenzyloxymethyl paper and hybridization with [32P]-cDNA probe showed that CP mRNA sequences were of multiple molecular weight distribution. In particular, 9.0, 6.6, 2.4 and 1.6 megadalton fractions of non-polyadenylate hnRNA carried CP-coding sequences while the only hand that hybridized to CP cDNA was detected in polyadenylated hnRNA. This band was of a molecular weight 1.1-1.2 megadaltons corresponding to that of cytoplasmic CP mRNA. The hybridization of high molecular weight hnRNA with full-length CP cDNA followed by the determination of the size of cDNA fragments protected against SI nuclease demonstrated that coding sequences of CP pre-mRNA are interrupted by intervening sequences.  相似文献   

4.
5.
Heterogeneous nuclear protein complexes (hnRNP) containing the precursor RNA from the adenovirus early region 2 were analysed to determine the specificity of protein-RNA interaction. RNA precursor sequences were present in isolated hnRNP complexes and endogenous 30S particles. At least 20-40 bases long fragments were protected when RNase A was used to remove unprotected RNA sequences in hnRNA complexes. Similarly around 40 bases of RNA were protected in 30S particles. These sequences represent discrete regions of the adenovirus genome. Especially sequences complementary to the EcoRI-F fragment encoding the first leader and the major intron for the DNA binding protein (DBP) RNA precursor, were analysed in detail. Tentatively, sequences resistant to RNase A were located in the middle of the intron and at the splice-donor junction of the first leader of the DBP precursor RNA. The same sequences were identified irrespective whether hnRNP complexes or 30S particles were used suggesting that 30S particles originate from hnRNP complexes. A 38.000 dalton protein appears to be in direct contact with RNA sequences complementary to the EcoRI-F fragment.  相似文献   

6.
Most (54–79%) of the heterogeneous nuclear RNA (hnRNA) which contains oligo(U) sequences was specifically retained on columns of poly(A) Sepharose and separated from hnRNA which lacked oligo(U) sequences. The isolation of oligo(U)-containing hnRNA was maximized by treating the hnRNA with HCHO prior to chromatography. This permitted an initial characterization of the oligo(U)-containing hnRNA. Experiments suggest that HCHO denatured the hnRNA and rendered the oligo(U) sequences accessible to poly(A) Sepharose. In denatured hnRNA, the percentage of molecules which contained an oligo(U) sequence increased with the size of the hnRNA; 32–57% of the large hnRNA [8–13 kilobases (kb) long] contained an oligo(U) sequence while only 11–14% of the 2-kb-long hnRNA contained an oligo(U) sequence. The number of oligo(U) sequences per molecule was also measured in denatured hnRNA of varying length. While the largest hnRNA class analyzed (13 kb) was found to contain the highest percentage of oligo(U)-containing molecules (57%), the 8- and 2-kb-long hnRNA fractions contained a greater total number of oligo(U)-containing molecules. The percentage of hnRNA molecules which contained an oligo(U) sequence, the number of oligo(U) sequences per molecule, and the size of the oligo(U) sequence were similar in both control hnRNA and the fraction of hnRNA (~30%) which is resistant to inhibition by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole.  相似文献   

7.
8.
Sequence complexity of heterogeneous nuclear RNA in sea urchin embryos.   总被引:12,自引:0,他引:12  
The sequence complexity of heterogeneous nuclear RNA is sea urchin gastrulas was measured by RNA-driven hybridization reactions with nonrepetitive sea urchin DNA. 28.5% of the sequence complexity of the genome is represented in the nuclear RNA. This amounts to 1.74 X 10(8) nucleotides of diverse sequence, more than 10 times the nucleotide complexity of the polysomal messenger RNA extracted from sea urchin embryos at the same stage. The complex set of nuclear RNA sequences driving this hybridization reaction was shown to be the same as the rapidly labeled hnRNA, using pulse-labeled nuclear RNA as driver.  相似文献   

9.
10.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to influence the structure of hnRNA and participate in the processing of hnRNA to mRNA. The hnRNP U protein is an abundant nucleoplasmic phosphoprotein that is the largest of the major hnRNP proteins (120 kDa by SDS-PAGE). HnRNP U binds pre-mRNA in vivo and binds both RNA and ssDNA in vitro. Here we describe the cloning and sequencing of a cDNA encoding the hnRNP U protein, the determination of its amino acid sequence and the delineation of a region in this protein that confers RNA binding. The predicted amino acid sequence of hnRNP U contains 806 amino acids (88,939 Daltons), and shows no extensive homology to any known proteins. The N-terminus is rich in acidic residues and the C-terminus is glycine-rich. In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present. It could not be defined from the sequence what segment of the protein confers its RNA binding activity. We identified an RNA binding activity within the C-terminal glycine-rich 112 amino acids. This region, designated U protein glycine-rich RNA binding region (U-gly), can by itself bind RNA. Furthermore, fusion of U-gly to a heterologous bacterial protein (maltose binding protein) converts this fusion protein into an RNA binding protein. A 26 amino acid peptide within U-gly is necessary for the RNA binding activity of the U protein. Interestingly, this peptide contains a cluster of RGG repeats with characteristic spacing and this motif is found also in several other RNA binding proteins. We have termed this region the RGG box and propose that it is an RNA binding motif and a predictor of RNA binding activity.  相似文献   

11.
12.
Heterogeneous nuclear RNA-protein fibers in chromatin-depleted nuclei   总被引:36,自引:15,他引:21       下载免费PDF全文
The heterogeneous nuclear RNA-protein (hnRNP) fibers in HeLa cell nuclei are visualized by a nuclear subfractionation technique which removes 96% of the chromatin in a single step and 99% in a two-step elution but leaves the bulk of the hnRNA complexed with the remnant nuclear structure or lamina. Both steady-state and newly synthesized (approximately 15-s label) hnRNA are associated with the remnant nuclei to about the same extent. This association does not appear to depend on the presence of chromatin and exists in addition to any possible association of hnRNP with chromatin itself. Electron microscopy of partially purified nuclear hnRNA complexes shows that the hnRNP fibers form a ribonucleoprotein network throughout the nucleus, whose integrity is dependent on the RNA. Autoradiography confirms that hnRNA is a constituent of the fibers. The RNA network visualized in these remnant nuclei may be similar to RNA networks seen in intact cells. The hnRNA molecules appear to be associated with the nuclear lamina, at least in part, by unusual hnRNA sequences. More than half of the recovered poly(A) and double-stranded hnRNA regions remains associated with the nuclear structures or the laminae after digestion with RNase and elution with 0.4 M ammonium sulfate. In contrast, the majority of oligo(A), another ribonuclease resistant segment, is released together with most of the partially digested but still acid-precipitable single- stranded hnRNA and the hnRNP proteins not eluted by the ammonium sulfate alone. These special RNA regions appear to be tightly bound and may serve as points of attachment of the hnRNA to nuclear substructures. It is suggested that hnRNA metabolism does not take place in a soluble nucleoplasmic compartment but on organized structures firmly bound to the nuclear structure.  相似文献   

13.
14.
R C Herman 《Biochemistry》1979,18(5):916-920
The message-sequence content of pulse-labeled poly(A)+ HeLa heterogenous nuclear RNA (hnRNA) has been examined by hybridizations to an excess of message cDNA. Control experiments show that the message cDNA accurately reflects the sequence distribution of the complex mixture of poly(A)+ messages present in the HeLa cytoplasm. Pulse-labeled poly(A)+ molecules in both the lamina-associated and shnRNA fractions contain message sequences, and approximately 65% of the poly(A)-adjacent hnRNA sequences are homologous to the 3' ends of mRNA. The majority of the pulse-labeled hnRNA molecules contain abundant message sequences. By use of these techniques it is also shown that some pulse-labeled polyadenylated message sequences are still synthesized in the presence of the adenosine analogue 5,6-dichloro-beta-D-ribofuranosylbenzimidazole under conditions where little or no new cytoplasmic mRNA is produced.  相似文献   

15.
U1 small nuclear RNA is thought to be involved in messenger RNA splicing by binding to complementary sequences in pre-mRNA. We have investigated intermolecular base-pairing between pre-mRNA (hnRNA) and U1 small nuclear RNA by psoralen crosslinking in situ, with emphasis on ribonucleoprotein structure. HeLa cells were pulse-labeled with [3H]uridine under conditions in which hnRNA is preferentially labeled. Isolated nuclei were treated with aminomethyltrioxsalen , which produces interstrand crosslinks at sites of base-pairing between hnRNA and U1 RNA. hnRNA-ribonucleoprotein (hnRNP) particles were isolated in sucrose gradients containing 50% formamide, to dissociate non-crosslinked U1 RNA, and then analyzed by immunoaffinity chromatography using a human autoantibody that is specific for the ribonucleoprotein form of U1 RNA (anti-U1 RNP). After psoralen crosslinking, pulse-labeled hnRNA in hnRNP particles reproducibly bound to anti-U1 RNP. The amount of hnRNA bound to anti-U1 RNP was reduced 80 to 85% when psoralen crosslinking of nuclei was omitted, or if the crosslinks between U1 RNA and hnRNA were photo-reversed prior to immunoaffinity chromatography. Analysis of the proteins bound to anti-U1 RNP after crosslink reversal revealed polypeptides having molecular weights similar to those previously described for U1 RNP. These proteins did not bind to control, non-immune human immunoglobulin G. These results indicate that the subset of nuclear U1 RNA that is base-paired with hnRNA at a given time in the cell is a ribonucleoprotein. This raises the possibility that these proteins, as well as U1 RNA itself, may participate in pre-mRNA splice site recognition by U1 RNP.  相似文献   

16.
hnRNP particles     
This article describes the discovery of nuclear DNA-like RNA (dRNA or hnRNA) and ribonucleoprotein particles in eukaryotes. Native hnRNA particles were isolated by sucrose gradient sedimentation and their structural organisation – nucleic acid (i.e. RNA) wrapped in a regular way on the surface of a series of globular protein particles – was determined. This led to the formulation of the informofer cycle hypothesis for the synthesis of hnRNA as a giant precursor molecule, its transport in informosomes within the nucleus, and subsequent splicing before export from the nucleus as free mRNA.  相似文献   

17.
18.
At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.  相似文献   

19.
A nuclear preparation, containing 60-80% of the total tissue DNA and less than 0.5% of the total rRNA, was used to characterize the nuclear RNA species synthesized in cultured artichoke explants. The half-lives of the nuclear RNA species were estimated from first-order-decay analyses to be: hnRNA (heterogeneous nuclear RNA) containing poly(A), 38 min; hnRNA lacking poly(A), 37 min; 2.5 X 10(6)-mol. wt. precursor rRNA, 24 min; 1.4 X 10(6)-mol.wt. precursor rRNA, 58 min; 1.0 X 10(6)-mol.wt. precursor rRNA, 52 min. The shorter half-lives are probably overestimates, owing to the time required for equilibration of the nucleotide-precursor pools. The pathway of rRNA synthesis is considered in terms of these kinetic measurements. The rate of accumulation of cytoplasmic polydisperse RNA suggested that as much as 40% of the hnRNA may be transported to the cytoplasm. The 14-25% of the hnRNA that contained a poly(A) tract had an average molecular size of 0.7 X 10(6) daltons. The poly(A) segment was 40-200 nucleotides long, consisted of at least 95% AMP and accounted for 8-10% of the [32P]orthophosphate incorporated into the poly(A)-containing hnRNA. Ribonucleoprotein particles released from nuclei by sonication, lysis in EDTA or incubation in buffer were analysed by sedimentation through sucrose gradients and by isopycnic centrifugation in gradients of metrizamide and CsCl. More than 50% of the hnRNA remained bound to the chromatin after each treatment. The hnRNA was always associated with protein but the densities of isolated particles suggested that the ratio of protein to RNA was lower than that reported for mammalian cells, The particles separated from chromatin were not enriched for poly(A)-containing hnRNA.  相似文献   

20.
The 5' ends of U1, U2, U3, U4, and U5 small nuclear RNAs (snRNA) are capped by a structure which contains N2,N2-7-trimethylguanosine (m2,2,7 G). m2,2,7 G was used as hapten to raise antibodies in rabbits, and these antibodies were linked to Sepharose. When deproteinized RNA was passed through this antibody column, these snRNA species were retained by the column. Conversely, 4 S, 5 S, 5.8 S, U6, and 7 S RNA, whose 5' termini do not contain m2,2,7 G, were not recognized. After a nuclear extract was loaded on the column, U1 RNA and some U2 RNA were retained. Therefore, the 5' ends of at least U1 RNA are accessible when this RNA species is in small nuclear ribonucleoprotein particle (snRNP) form. This is of interest, since it has been proposed that the 5' terminus sequence of U1 RNA may hybridize with splice junctions in heterogeneous nuclear ribonucleoprotein particles (hnRNP) during mRNA splicing. The retention of m2,2,7 G-containing RNA species by these antibodies is not due to association of snRNAs or snRNPs with heterogeneous nuclear RNA (hnRNA) or hnRNP (and antibody recognition of 7-monomethylguanosine residues in hnRNA), since the reaction still occurs after removal of hnRNA or hnRNP by sucrose gradient centrifugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号