首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
论边坡的生态恢复   总被引:42,自引:1,他引:41  
潘树林  王丽  辜彬 《生态学杂志》2005,24(2):217-221
对裸露边坡采用植被防护的方式日益引起全球重视,但边坡植被恢复是一项比较复杂的工程,本文阐述了边坡植被的功能,生态恢复的原理,植物品种的筛选,边坡生态恢复的方法及应用,边坡生态恢复的发展方向。  相似文献   

2.
遥感探测土地植被覆盖指数的准确度评估   总被引:6,自引:3,他引:3  
GIS数据的准确度一直是GIS应用的考虑事项。用虚例和实例揭示了土地植被覆盖指数的准确度与图像分类的准确度之间的复杂关系,并进一步用数学方式进行了解释。土地植被覆盖指数的准确度取决于图像分类准确度,但与分类总准确度没有直接关系。用户和产家准确度比总准确度对土地植被覆盖指数的准确度具有更直接的控制,所以在图像分类报告中不应被忽略为了保证土地植被覆盖指数的准确度,某土地类型的用户和产家准确度应该尽可能一致,同时要使得这两个准确度数值越高越好。  相似文献   

3.
The work examines contemporary climate, soil cover, and vegetative cover of the southern forest-steppe in the Bashkir Cis-Ural region. Functioning of natural complexes in changing climate has been analyzed. Dynamics and transformation of the complexes under the impact of natural and anthropogenic factors have been investigated. Contemporary vegetative cover has been studied and the percentage of synanthropic species has been determined.  相似文献   

4.
新疆准噶尔盆地东部波斑鸨炫耀栖息地选择   总被引:8,自引:3,他引:8  
2000年4-7月,通过野餐直接观察采样的方法,对准噶尔盆地东部波斑鸨炫耀栖息地进行了研究。结果表明:条块状高灌丛随机散布在视野开阔、地势平坦的小半灌木群落中是波斑鸨炫耀栖息地的景观特征;影响波斑鸨炫耀栖息地选择的主要环境因子是植物种数、植被盖度、密度和蹁高灌丛距离;炫耀地内的植物种数、植被盖度、植被密度和草本植物种数显著低于对照样方内的相应成分;绝大多数炫耀地位于低矮稀疏的半灌木群落中,同时又总是靠近条块状高灌丛。这种灌嵌景观的炫耀地植物群落结构为波斑鸨的生存、炫耀提供了理想场所。  相似文献   

5.
Variation in animal space use patterns may be linked to numerous ecological factors affecting survival and reproduction. We examined the relationship between ecology and above‐ and below‐ground components of space use by Octodon degus, a semi‐fossorial rodent in Chile. We monitored the daytime minimum convex polygon and adaptive kernel range areas of 26 individuals and determined the number of burrow systems used by degus during night‐time radiotelemetry and trapping of burrow systems on two study grids at Rinconada de Maipú, a semi‐arid Matorral in central Chile. We quantified food biomass, soil hardness, distance to overhead vegetative cover, and density of burrow openings at putative nest burrows. Degus living on the grid with more shrub cover had larger range areas than degus living on the grid with less cover. The range areas of degus decreased with increasing distance from overhead vegetative cover. There was a weak (but statistically significant) negative relationship between the number of burrow systems used by degus and the distance to vegetative cover and density of burrow openings at burrow systems. Male and female degus had similar range areas. Our results suggest that overhead cover decreases the risk of predation to male and female degus. Degus probably balance the benefits of numerous burrow openings (reduced predation risk) with time and energy requirements of burrow construction and maintenance. Models of space use that consider the effect of multiple ecological variables should measure different dimensions of space use.  相似文献   

6.
Climate change and increased anthropogenic activity may both alter the current ranges of non-native plant species in mountainous areas, and could result in increased success of such species at higher elevations in the future. However, the course that management should take is often unclear due to a lack of information about the dynamics of how successful mountain invaders spread away from roadsides. The goals of this study were to determine if patterns of growth of a successful mountain invader, Linaria dalmatica (L.) Mill., (as measured by species cover) were: (1) similar to those of establishment (as measured by probability of occurrence), and (2) structured by the extant plant community. Study sites were established throughout the current elevation range of L. dalmatica in the Greater Yellowstone Ecosystem, and cover of the species was measured along with several vegetative community characteristics. Elevation influenced probability of occurrence (i.e., chance of establishment) for L. dalmatica, but not cover (which represents growth after establishment). L. dalmatica cover was negatively associated with several vegetative community characteristics which did not appear to be influenced by the presence of L. dalmatica. These results suggest that L. dalmatica establishment may be limited by climate, but that spread of established populations away from roadsides is most influenced by properties of the vegetative community. They further suggest that the resident vegetative communities structure the abundance of this invader, and that to limit spread of this species in mountainous areas, disturbance to the existing vegetative communities should be minimized.  相似文献   

7.
Summary The successful conservation and restoration of the temperate native grasslands of south‐eastern Australia is critical to reversing the decline in range and diversity of these threatened plant communities. Yet the goals of high native species diversity and weed management are difficult to achieve in grassland restoration projects. To increase our understanding of whether synergies exist between these goals (i.e. whether early introduction of a larger number of species might improve both outcomes in the reassembly of native grassland), we examined the relationships between plant species number, functional group number and resource use during the establishment phase of direct‐sown grassland. We did this by sowing a representative suite of species (at varying levels of species number and functional group number) into experimental plots and then measuring and analysing the extent to which the newly established assemblages captured available resources, i.e. used soil nitrate, absorbed light and produced biomass (vegetative cover). Statistically significant correlations were common between the predictor variables (species number, functional group number, percentage vegetative cover, plant number, presence of idiosyncratic (dominating) species) and responses (soil nitrate concentration, light reduction or ‘extinction’). Higher diversity was associated with lower soil nitrate, while percentage vegetative cover and the presence of idiosyncratic species best predicted light extinction. The relationship between diversity, and plant biomass (measured as vegetative cover) and plant number was positive in the first year of the study. The diversity/biomass relationship became negative in the second year due to the higher numbers and cover of ‘idiosyncratic’ species. The diversity/plant number relationship also became negative in the autumn of the second year and was reduced to a trend by the winter. We found that lower nitrate and increasing plant numbers and vegetative cover were most strongly linked to increasing species number in the early stages of this study. This suggests that introducing and maintaining high diversity early in a native grassland reassembly or enhancement project will improve the resistance (e.g. to weed) of these communities. At later stages of grassland development, this function may be provided by the more dominating idiosyncratic species. The maintenance of diversity, an important goal in its own right, will therefore necessitate managed disturbances to periodically reduce the vegetative dominance of idiosyncratic species, releasing resources for the diverse range of other species whose early introduction will have allowed them to persist in the soil seed bank or as suppressed rootstocks.  相似文献   

8.
We experimentally examined the effects of canopy, vegetation, and leaf litter cover on the demography of Wild lupines (Lupinus perennis) in a central North American oak savanna spanning 9 years. We also compared the distribution of Wild lupine across the landscape to results predicted by the demographic experiments. With less canopy cover, soil temperatures were warmer and seedlings emerged earlier. Seedling survival increased 14% with each additional leaf grown. Seedling survival was four times greater in openings and partial shade than in dense shade. Seedling survival was also influenced by interactions between canopy cover and vegetation cover, between canopy cover and leaf litter, and among canopy cover, vegetation cover, and litter cover. In openings, seedlings had higher survival when vegetative cover was present, suggesting a positive shading effect on survival, but with greater canopy cover vegetative cover reduced survival. Seedling survival was greater for plants that experienced herbivory, a result that was probably related to plant size and quality rather than having been eaten. Survival of lupines to 9 years after seed planting was greatest in the partial shade, moderate in openings, and least in dense shade. Wild lupine cover across the landscape was greatest when litter cover was low and canopy cover and ground layer cover were moderate. Reduction of canopy cover by burning or cutting, and reduction of leaf litter by prescribed burning will benefit the reintroduction of Wild lupine by increasing light, reducing litter cover, and creating disturbances; however, the reduction of vegetation cover in openings may hinder lupine reintroduction.  相似文献   

9.
Erosion is one of the main problems in roadfill restoration. Revegetation is widely used as a method to reduce erosion rates, and it is often carried out through hydroseeding. In semiarid Mediterranean conditions, this approach to revegetation often produces poor results due to climatic limitations. We evaluated whether (1) spreading topsoil and (2) hydroseeding with local rather than commercial species mixtures could improve the vegetative cover of roadfills. The study was carried out in 24 plots over a 20‐month period. At the end of the study, vegetation cover was higher in topsoiled plots (38.8%) than in nontopsoiled plots (21.5%). Locally selected species produced higher vegetative cover (61.1%) than did standard commercial species (52.2%). After 20 months, the erosion index was not different among any treatment probably due to the low sensitivity of this variable. These results suggest that amendment of soils through the addition of topsoil is an important technique in roadfill revegetation in Mediterranean environments. Additionally, hydroseeding with local species will produce better vegetative cover on roadfills than does hydroseeding with available commercial species.  相似文献   

10.
Iman Haghiyan 《农业工程》2018,38(6):391-393
In this study the effects of environmental factors on some vegetative characteristics of Quercus brantii was investigated in Kouh gachan, Ilam, West of Iran, using multivariate analysis. Therefore 64 sample plots with a size of 200?m2 were considered for measuring the vegetative parameters. Some environmental factors such as slope, aspect and soil depth were recorded in all sample plots. The Detrended Correspondence Analysis (DCA) was used to investigate the relation between vegetative parameters and environmental factors. Redundancy analysis (RDA) analysis was also used to interpret the results. The results of DCA analysis showed that the effect of environmental factors on vegetation cover is significant. Slope had the smallest and the soil depth had the biggest effect on vegetative characteristics of Quercus brantii. The results also confirmed the usage of RDA analysis for investigating the relationship between environmental factors and vegetative characteristics.  相似文献   

11.
Arbuscular mycorrhizal fungi (AMF) may play an important role in ecological succession, but few studies have documented the effectiveness of mycorrhizal inoculation at restoration/reclamation sites. At a roadside prairie restoration in Shakopee, Minnesota, we compared AMF root colonization and resulting vegetative cover among four inoculation treatments. After 15 mo of growth, we found that AMF colonization was high in all treatments but was significantly higher in treatments that received AMF inoculum propagated from a local prairie site or commercially available inoculum than the uninoculated control. For the prairie inoculum, this increase in colonization occurred whether the inoculum was applied with seeds in furrows or broadcast with seeds on the soil surface. However, increased colonization did not discernibly affect the restored vegetation; neither total vegetative cover nor the proportion "desired" prairie vegetation differed among inoculation treatments. By the end of the third growing season (27 mo after planting) there were no longer differences in AMF colonization among the inoculation treatments nor were there differences in vegetative cover. It is likely that natural recolonization of the plots by remnant AMF populations at the site limited the duration of the inoculation effect. This natural recolonization, in combination with relatively high soil phosphorus levels, likely rendered inoculation unnecessary. In contrast to previous published studies of AMF inoculation in landscape restorations, this study shows that AMF inoculation may not be warranted under some circumstances.  相似文献   

12.
Wind is a key abiotic factor that influences the dynamics of arid and semiarid systems. We investigated two basic relationships on vegetation manipulation (grass cover reduction) plots at the Jornada Experimental Range in southern New Mexico: (1) wind erosion rates (horizontal mass flux and dust emission) versus vegetative cover, and (2) nutrient loss versus vegetative cover. The results indicate that wind erosion rates and nutrient loss by dust emission are strongly affected by plant cover; however, the importance of shrubs and grasses in reducing dust flux may not be equal. The dramatic increase of wind erosion between 75% grass cover reduction and 100% grass cover reduction suggests that sparsely distributed mesquites are relatively ineffective at reducing wind erosion and nutrient loss compared to grasses. Comparisons of nutrients between surface soils and wind blown dust indicate that aeolian transport is a major cause for the loss of soil nutrients in susceptible environments. We found that increased aeolian flux over three windy seasons (March 2004–July 2006) removed up to 25% of total organic carbon (TOC) and total nitrogen (TN) from the top 5 cm of soil, and about 60% of TOC and TN loss occurred in the first windy season (March–July 2004). The balance between net loss of nutrients by aeolian processes and the addition of nutrients by biotic processes changed from negative (net loss) to positive (net accumulation) between 50% grass cover reduction and 25% grass cover reduction. The estimated lifetime of surface soil TOC and TN of about 10 years on the plot with 100% grass cover reduction indicates that impacts of wind erosion on soil resources can occur on very short timescales.  相似文献   

13.
In this paper the investigation results of successional processes in the vegetative cover appearing due to succession starting in native ecosystem inundation zone under Sayan-Shush reservoir influence are given.  相似文献   

14.
Although the common carp (Cyprinus carpio), an invasive benthic fish from Eurasia, has long been strongly implicated in the disappearance of vegetative cover and reduced waterfowl abundance in North American shallow lakes, the details of this relationship are obscure. This study documented ecological changes in a recently restored shallow lake (Hennepin and Hopper Lakes, IL, USA) at a time that it was experiencing a large increase in its carp population. We estimated the abundance and biomass of carp 7 years after this lake had been restored and then back-calculated carp population size across time while examining changes in the lake’s plant and waterfowl communities. We found that the biomass of carp remained below ~30 kg/ha for 5 years following restoration, but then increased to ~100 kg/ha in the sixth year following a strong recruitment event. Although a carp biomass of <30 kg/ha had no discernible effects on vegetative cover (which exceeded 90%) or waterfowl (which exceeded 150,000 individuals during fall censuses), the increase to 100 kg/ha was associated with a ~50% decrease in both vegetative cover and waterfowl. A further increase in carp biomass to over 250 kg/ha during the seventh year coincided with a decrease in the vegetative cover to 17% of the lake’s surface and a decline in waterfowl use to ~10% of its original value. These data suggest that the common carp is extremely damaging to the ecological integrity of shallow lakes when its density exceeds ~100 kg/ha. Since the biomass of carp in Midwestern shallow lakes commonly exceeds this value by 3–4 times, it seems likely that carp are responsible for the large-scale habitat deterioration described in many of these ecosystems. Handling editor: J. Cambray  相似文献   

15.
Ecological restorations often require removal of invasive species. The abundance of invasives has tended to catalyze research emphasizing removal, not broader understandings, of species mechanisms for persistence in the landscape (e.g. reproductive output and seed dispersal). Asiatic shrub honeysuckles (Lonicera spp.) are pernicious invaders throughout eastern North America. Heavy tree canopy cover apparently reduces growth and reproductive output in Lonicera maackii, which is widespread through the lower Midwestern United States. To help focus control efforts more effectively, we quantified the effect of tree canopy cover on vegetative growth, flowering, and fruit production under three canopy densities. Mean vegetative growth of flowering shoots was not affected by canopy cover. All aspects of sexual reproduction (flower production, fruit set, fruit number, fruit mass, seed number, and seed size) were strongly reduced by moderate shade. Although all individuals modify community and ecosystem properties, a limited number of high light individuals might also provide the greatest proportion of the seeds. Through model simulation of honeysuckle population structure in relation to canopy cover, we argue that it can sometimes be more efficient to initially target reproductive individuals in the high light edge and interior gap environments than to immediately focus on all individuals in the forest interior.  相似文献   

16.
ABSTRACT We recorded telemetry locations from 1,129 radiotagged turkeys (Meleagris gallopavo intermedia) on 4 study areas in the Texas Panhandle and southwestern Kansas, USA, from 2000 to 2004. Analyses of telemetry locations indicated both sexes selected riparian vegetative zones. Females did not select grazed or nongrazed pastures for daily movements. However, females did select nongrazed pastures for nest sites on 2 study areas and males selected for grazed pastures at one study area during the breeding season. We compared nest sites (n = 351) to random sites using logistic regression, which indicated height of visual obstruction, percent canopy cover, and percent bare ground provided the highest predictive power (P ≤ 0.003) for characteristics describing nest-site selection. Nest-site vegetative characteristics between vegetative zones differed primarily in composition: upland zone nest sites had more (P ≤ 0.001) shrubs and riparian zone nest sites had more (P ≤ 0.001) grass. There were no differences in measured nest site vegetative characteristics between pasture types, but there were differences between available nesting cover in grazed and nongrazed pastures. Random plots in grazed pastures had less grass cover (P ≤ 0.001) and more bare ground (P = 0.002). Because of cattle impacts on average grass height and availability, grazing would likely have the highest impact on nesting in riparian zones due to turkey use of grass as nesting cover. An appropriate grazing plan to promote Rio Grande turkey nesting habitat would include grazing upland zones in the spring, when it likely has little impact on nesting-site selection, and grazing riparian zones following breeding season completion. Grazing at light to moderate intensities with periods of rest did not affect male turkey pasture use and may have continued to maintain open areas used by male turkeys for displaying purposes.  相似文献   

17.
This study examined the morphogenesis and replication dynamics of the different life stages (cysts, filamentous cells, vegetative cells) of Helicosporidium sp., a non-photosynthetic, entomopathogenic alga. The isolate (SjHe) used originated from an infected black fly larva. Filamentous cell transformation into vegetative cells and autosporulation during vegetative cell replication were observed under controlled in vitro conditions. The transformation process was initiated by a partial swelling of the filamentous cell along with the reorganization of the nuclear material. Two subsequent nuclear and cell divisions resulted in the release of 4 rod-shaped daughter cells, which divided into oval to spherical vegetative cells. These underwent several cycles of autosporogenic cell division. Multiple-passaged vegetative cell cultures formed non-motile, adherent cell clusters (palmelloid colonies). Vegetative replication dynamics were also observed in 2 experimental noctuid hosts, Spodoptera exigua and Helicoverpa zea. The average density of helicosporidial cells produced per microliter hemolymph exceeded cell concentrations obtained in vitro by 15- and 46-fold in S. exigua and H. zea, respectively. Cyst morphogenesis was only observed in the hemolymph, whereas no cysts differentiated at various in vitro conditions.  相似文献   

18.
Barrier islands provide the first line of defense against storms for millions of people living in coastal areas. Upland vegetation (that is, grassland, shrubland, and maritime forest) has received little attention, even though this land surface is most strongly affected by development pressures. We use remote-sensing analysis to assess state change on seven undeveloped Virginia barrier islands over 27 years (1984–2011) that are free from direct human influence. Our analysis highlights the spatial–temporally dynamic nature of barrier island upland land area and vegetation, with rapidly changing ecosystem states. Over the time period, upland vegetation was dramatically reduced by 29% whereas woody vegetation cover increased 40% across all islands. Although conversions between sand, grassland, and woody vegetation were variable within each island, three major patterns of vegetative land-cover change were apparent: overall loss of vegetative cover, frequent transitions between grass and woody cover, and gain in woody cover. These patterns are valuable for understanding natural evolution of barrier islands in response to sea-level rise. Evaluation of temporal dynamics in barrier upland is needed to characterize underlying processes including island resilience or chronic stress, and is a prerequisite to sustainable coastal management- and resilience-based planning, especially when implementing ecosystem-based solutions.  相似文献   

19.
The significant loss of the longleaf pine‐wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long‐term and landscape‐scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non‐matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in June 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 × 3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non‐matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine‐wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.  相似文献   

20.
The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号