首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADP+-specific glutamate dehydrogenase from Salmonella typhimurium, cloned and expressed in Escherichia coli, has been purified to homogeneity. The nucleotide sequence of S. typhimurium gdhA was determined and the amino acid sequence derived. The nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) reacts irreversibly with the enzyme to yield a partially inactive enzyme. After about 60% loss of activity, no further inactivation is observed. The rate of inactivation exhibits a nonlinear dependence on 2-BDB-T epsilon A-2',5'-DP concentration with kmax = 0.160 min-1 and KI = 300 microM. Reaction of 200 microM 2-BDB-T epsilon A-2',5'-DP with glutamate dehydrogenase for 120 min results in the incorporation of 0.94 mol of reagent/mol of enzyme subunit. The coenzymes, NADPH and NADP+, completely protect the enzyme against inactivation by the reagent and decrease the reagent incorporation from 0.94 to 0.5 mol of reagent/mol enzyme subunit, while the substrate alpha-ketoglutarate offers only partial protection. These results indicate that 2-BDB-T epsilon A-2',5'-DP functions as an affinity label of the coenzyme binding site and that specific reaction occurs at only about 0.5 sites/enzyme subunit or 3 sites/hexamer. Glutamate dehydrogenase modified with 200 microM 2-BDB-T epsilon A-2',5'-DP in the absence and presence of coenzyme was reduced with NaB3H4, carboxymethylated, and digested with trypsin. Labeled peptides were purified by high performance liquid chromatography and characterized by gas phase sequencing. Two peptides modified by the reagent were isolated and identified as follows: Phe-Cys(CM)-Gln-Ala-Leu-Met-Thr-Glu-Leu-Tyr-Arg and Leu-Cys(CM)-Glu-Ile-Lys. These two peptides were located within the derived amino acid sequence as residues 146-156 and 282-286. In the presence of NADPH, which completely prevents inactivation, only peptide 146-156 was labeled. This result indicates that modification of the pentapeptide causes loss of activity. Glutamate 284 in this peptide is the probable reaction target and is located within the coenzyme binding site.  相似文献   

2.
The bifunctional reagent 1,4-dibromobutanedione (DBBD) reacts covalently with pyruvate kinase from rabbit muscle to cause inactivation of the enzyme at a rate that is linearly dependent on the reagent concentration, giving a second order rate constant of 444 min-1 M-1. The individual substrates phosphoenolpyruvate (with KCl), ADP, or ATP in the presence of divalent metal cation provide marked protection against inactivation suggesting that reaction occurs in the region of the active site. The limited incorporation of DBBD into pyruvate kinase was measured by reduction of the carbonyl groups of the enzyme-bound reagent using [3H]NaBH4. When pyruvate kinase was reacted with 120 microM DBBD at pH 7.0 for 50 min in the absence of protectants, 1.8 mol of tritium/mol of subunit was incorporated, whereas in the presence of phosphoenolpyruvate with KCl, only 1.0 mol of tritium was incorporated per mole of subunit. Modified peptides were isolated from tryptic digests of pyruvate kinase. Reaction of enzyme in the presence of substrate (showing no activity loss) yielded a single peptide, Asn-Ile-X1-Lys, where X1 corresponds to Cys164 of the known amino acid sequence of muscle pyruvate kinase. In the absence of protectants, reaction for 10 min (when the enzyme retained substantial activity) yielded Asn-Ile-X1-Lys as the major labeled peptide, whereas reaction for 50 min (when the enzyme was 88% inactivated) yielded predominantly Asn-Ile-X1-Lys cross-linked to X2-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys, where X2 corresponds to Cys151. Because activity loss correlates with the appearance of the cross-linked peptides but not with formation of Asn-Ile-X1-Lys, inactivation is likely caused by the reaction leading to the cross-link between Cys151 and Cys164. The distance between the alpha-carbons of these residues in the crystal structure is 15.5 A, whereas only 12.0 A can be spanned by the two side chains linked by a dioxobutyl group, suggesting either that pyruvate kinase undergoes a conformational change in forming the cross-link or that local rapid fluctuations in structure occur in solution to the extent of 3.5 A in this region of pyruvate kinase.  相似文献   

3.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

4.
D L DeCamp  S Lim  R F Colman 《Biochemistry》1988,27(20):7651-7658
Two new reactive nucleotides have been synthesized and characterized: 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-diphosphate and 5'-triphosphate (8-BDB-TADP and 8-BDB-TATP). ADP or ATP was converted to 8-thio-ADP (-ATP) via 8-bromo-ADP (-ATP), followed by condensation with 1,4-dibromobutanedione. Rabbit muscle pyruvate kinase is inactivated by both reagents in a biphasic manner with an initial rapid loss of 75% activity, followed by a slow total inactivation. The initial fast reaction with both compounds exhibits nonlinear dependence on reagent concentration, indicating formation of a reversible enzyme-reagent complex prior to covalent attachment. The presence of the gamma-phosphoryl group improves the performance of the affinity label: KI values for the fast phase are similar (about 100 microM), whereas kmax for 8-BDB-TATP is about three times greater than that of 8-BDB-TADP (0.286 min-1 vs 0.0835 min-1). After an 80-min incubation with 175 microM of either reagent, about 2 mol/mol of subunit is incorporated with 76% inactivation caused by 8-BDB-TADP and 97% inactivation by 8-BDB-TATP. Loss of activity is prevented by substrates, with the best protection afforded by a combination of ATP, Mn2+, K+, and phosphoenolpyruvate. Reaction of pyruvate kinase with either compound in the presence of protecting ligands leads to incorporation of about 1 mol of reagent/mol of subunit with only about 15% loss of activity. These results suggest that 8-BDB-TADP and 8-BDB-TATP react with two groups on the enzyme, one of which is at or near the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A new reactive fluorescent ADP analog has been synthesized: 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 5'-diphosphate (2-BDB-T epsilon A-5'-DP). Rabbit muscle pyruvate kinase is inactivated by 200 microM 2-BDB-T epsilon A-5'-DP in a biphasic manner, with an initial loss of 75% activity followed by a slow total inactivation. The rate constants for both phases exhibit nonlinear dependence on reagent concentration, consistent with reversible formation of an enzyme-reagent complex (KI = 133 microM) prior to irreversible reaction. Loss of activity is prevented by substrates. The best protection against inactivation is provided by phosphoenolpyruvate (PEP), KCl, and MnSO4, suggesting that the reaction occurs in the region of the PEP binding site. Incorporation of 1.7 mol/mol enzyme subunit accompanies 90% inactivation by 200 microM 2-BDB-T epsilon A-5'-DP in 80 min. However, in the presence of PEP, KCl, and MnSO4, 1.0 mol of reagent is incorporated when the enzyme is only 14% inactivated. These results indicate that 2-BDB-T epsilon A-5'-DP reacts with two groups on the enzyme, one of which is at or near the PEP binding site. Incubation of pyruvate kinase with related nucleotide analogs lacking a 5'-diphosphate or a diketo group suggests that the diketo group, but not the diphosphate, is essential for inactivation. The enolized form of the bromodioxobutyl group resembles phosphoenolpyruvate and probably directs the reagent to the PEP binding site. Modified enzyme, prepared by incubating pyruvate kinase with 200 microM 2-BDB-T epsilon A-5'-DP in the absence and presence of phosphoenolpyruvate, KCl, and MnSO4, was reduced with [3H]NaBH4, carboxymethylated, and digested with trypsin. Nucleotidyl peptides were isolated by chromatography on phenylboronateagarose followed by reverse phase high pressure liquid chromatography. Two radioactive peptides were identified: Asn162-Ile-Cys-Lys165 and Ile141-Thr-Leu-Asp-Asn-Ala-Tyr-Met-Glu-Lys150. Only the tetrapeptide was modified in the presence of PEP, KCl, and Mn+ when the enzyme retained most of its activity. Cys164 is thus designated the nonessential modified residue, while modification of Tyr147 near the active site of pyruvate kinase is responsible for loss of enzymatic activity. The observed biphasic kinetics of inactivation are due to the negatively cooperative reaction of 2-BDB-T epsilon A-5'-DP with Tyr147 in the tetramer. The new compound, 2-BDB-T epsilon A-5'-DP, may have general application as an affinity label of ADP and PEP sites in other proteins.  相似文献   

6.
A new reactive adenine nucleotide has been synthesized: 2-[(4-bromo-2,3-dioxobutyl)thio]-adenosine 5'-monophosphate (2-BDB-TAMP). Adenosine 5'-monophosphate 1-oxide was synthesized by reaction of AMP with m-chloroperoxybenzoic acid. Treatment with NaOH followed by reaction with carbon disulfide yielded 2-thioadenosine 5'-monophosphate (TAMP). The final product was generated by reaction of TAMP with 1,4-dibromobutanedione. The structure of 2-BDB-TAMP was determined by UV, 1H NMR, and 13C NMR spectroscopy as well as by bromide and phosphorus analysis. Rabbit muscle pyruvate kinase is inactivated by 2-BDB-TAMP at pH 7.0 and 25 degrees C. The inactivation rate exhibits a nonlinear dependence on the reagent concentration with KI = 0.57 mM. Protection against inactivation is provided by ADP and ATP, in the presence of Mn2+, as well as by phosphoenolpyruvate, in the presence of K+; in addition, partial protection is provided by AMP plus Mn2+. Incubation of pyruvate kinase with 0.075 mM 2-BDB-TAMP for 70 min in the absence of protective ligands leads to incorporation of 1.55 mol of reagent/mol of enzyme subunit when the enzyme is 53% inactive. In the presence of ADP and Mn2+, only 0.96 mol of reagent/mol of subunit is incorporated at 70 min, while the enzyme retains 100% activity. Similar results were obtained in the presence of ATP plus Mn2+. Assuming that the groups modified in the absence of ligands include those modified in the presence of the nucleotides, the 53% inactivation can be attributed to the modification of 0.59 (1.55-0.96) group per enzyme subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
J L Wyatt  R F Colman 《Biochemistry》1977,16(7):1333-1342
Rabbit muscle pyruvate kinase is irreversibly inactivated upon incubation with the adenine nucleotide analogue, 5'-p-fluorosulfonylbenzoyladenosine. A plot of the time dependence of the logarithm of the enzymatic activity at a given time divided by the initial enzymatic activity(logE/Eo) reveals a biphasic rate of inactivation, which is consistent with a rapid reaction to form partially active enzyme having 54% of the original activity, followed by a slower reaction to yield totally inert enzyme. In addition to the pyruvate kinase activity of the enzyme, modification with 5'-p-fluorosulfonylbenzoyladenosine also disrupts its ability to catalyze the decarboxylation of oxaloacetate and the ATP-dependent enolization of pyruvate. In correspondence with the time dependence of inactivation, the rate of incorporation of 5'-p-[14C]fluorosulfonylbenzoyladenosine is also biphasic. Two moles of reagent per mole of enzyme subunit are bound when the enzyme is completely inactive. The pseudo-first-order rate constant for the rapid rate is linearly dependent on reagent concentration, whereas the constant for the slow rate exhibits saturation kinetics, suggesting that the reagent binds reversibly to the second site prior to modification. The adenosine moiety is essential for the effectiveness of 5'-p-fluorosulfonylbenzoyladenosine, since p-fluorosulfonylbenzoic acid does not inactivate pyruvate kinase at a significant rate. Thus, the reaction of 5'-p-fluorosulfonylbenzoyladenosine with pyruvate kinase exhibits several of the characteristics of affinity labeling of the enzyme. Protection against inactivation by 5'-p-fluorosulfonylbenzoyladenosine is provided by the addition to the incubation mixture of phosphoenolpyruvate. Mg-ADP or Mg2+. In contrast, the addition of pyruvate, Mg-ATP, or ADP and ATP alone has no effect on the rate of inactivation. These observations are consistent with the postulate that the 5'-p-fluorosulfonylbenzoyladenosine specifically labels amino acid residues in the binding region of Mg2+ and the phosphoryl group of phosphoenolpyruvate which is transferred during the catalytic reaction. The rate of inactivation increases with increasing pH, and k1 depends on the unprotonated form of an amino acid residue with pK = 8.5. On the basis of the pH dependence of the reaction of pyruvate kinase with 5'-p-fluorosulfonylbenzoyladenosine and the elimination of cysteine residues as possible sites of reaction, it is postulated that lysyl or tyrosyl residues are the most probably candidates for the critical amino acids.  相似文献   

8.
S H Vollmer  R F Colman 《Biochemistry》1990,29(10):2495-2501
The affinity label 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate (8-BDB-TA-5'-TP) reacts covalently with rabbit muscle pyruvate kinase, incorporating 2 mol of reagent/mol of enzyme subunit upon complete inactivation. Protection against inactivation is provided by phosphoenolpyruvate, K+, and Mn2+ and only 1 mol of reagent/mol of subunit is incorporated [DeCamp, D.L., Lim, S., & Colman, R.F. (1988) Biochemistry 27, 7651-7658]. We have now identified the resultant modified residues. After reaction with 8-BDB-TA-5'-TP at pH 7.0, modified enzyme was incubated with [3H]NaBH4 to reduce the carbonyl groups of enzyme-bound 8-BDB-TA-5'-TP and to introduce a radioactive tracer into the modified residues. Following carboxymethylation and digestion with trypsin, the radioactive peptides were separated on a phenylboronate agarose column followed by reverse-phase high-performance liquid chromatography in 0.1% trifluoroacetic acid with an acetonitrile gradient. Gas-phase sequencing gave the cysteine-modified peptides Asn162-Ile-Cys-Lys165 and Cys151-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys161, with a smaller amount of Asn43-Thr-Gly-Ile-Ile-Cys-Thr-Ile-Gly-Pro-Ala-Ser-Arg55. Reaction in the presence of the protectants phosphoenolpyruvate, K+, and Mn2+ yielded Asn-Ile-Cys-Lys as the only labeled peptide, indicating that inactivation is caused by modification of Cys151 and Cys48.  相似文献   

9.
The nucleotide affinity label 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate (2-BDB-TADP) reacts covalently with pig heart NAD+-dependent isocitrate dehydrogenase with a limiting value of 75% inactivation and loss of ADP activation concomitant with incorporation of about 1 mol of reagent/mol of average enzyme subunit (Huang, Y.-C., Bailey, J. M., and Colman, R. F. (1986) J. Biol. Chem. 251, 14100-14107). Complete protection against the functional changes is provided by ADP + Mn2+, and reagent incorporation is decreased to about 0.5 mol/mol of average enzyme subunit. We have now identified the critical modified peptide by comparison of the peptides labeled by 2-BDB-TADP at pH 6.8 in the absence and presence of ADP + Mn2+. After removal of excess reagent, modified enzyme was treated with [3H]NaBH4 to reduce the keto groups of the reagent and introduce a radioactive tracer into the reagent which is covalently linked to the protein. Following carboxymethylation and digestion with trypsin, the specific modified peptide was isolated using two successive high performance liquid chromatography steps: 1) 0.1% trifluoroacetic acid with an acetonitrile gradient; and 2) 20 mM ammonium acetate, pH 5.8, with an acetonitrile gradient. Gas phase sequencing gave the modified peptide Leu-Gly-Asp-Gly-Leu-Phe-Leu-Gln in which aspartic acid is the target of 2-BDB-TADP. Isolation of the corresponding tryptic peptide from unmodified enzyme yielded the sequence Leu-Gly-Asp-Gly-Leu-Phe-Leu-Gln-CmCys-CmCys-Lys. Isocitrate dehydrogenase is composed of three distinct subunits (alpha, beta, and gamma), separable by chromatofocusing in urea and identified by analytical gel isoelectric focusing. The evidence indicates that the specific peptide labeled by 2-BDB-TADP, which is at or near the ADP site, can be derived from the gamma subunit.  相似文献   

10.
Adenosine diphosphopyridoxal, the affinity labeling reagent specific for a lysyl residue in the nucleotide-binding site of several enzymes (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964; Tamura, J. K., Rakov, R. D., and Cross R. L. (1986) J. Biol. Chem. 261, 4126-4133) was applied to adenylate kinase from rabbit muscle. Incubation of the enzyme with a low concentration of the reagent at 25 degrees C for 20 min followed by reduction by sodium borohydride resulted in rapid inactivation of the enzyme. Extrapolation to 100% loss of enzyme activity gave a value of 1.0 mol of the reagent per mol of enzyme. ADP, ATP, and MgATP almost completely protected the enzyme from inactivation, whereas AMP offered little retardation of the inactivation. Dilution of the inactivated enzyme which had not been treated with the reducing reagent led to restoration of enzyme activity. This reactivation was accelerated by ATP but not by AMP. Structural study of the labeled peptide showed that Lys21 is exclusively labeled by adenosine diphosphopyridoxal. These results suggest that the epsilon-amino group of Lys21 is located in the ATP-binding site of the enzyme, more specifically at or close to the subsite for the gamma-phosphate of the nucleotide.  相似文献   

11.
D W Pettigrew 《Biochemistry》1987,26(6):1723-1727
Incubation of Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase) with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSO2BzAdo) at pH 8.0 and 25 degrees C results in the loss of enzyme activity, which is not restored by the addition of beta-mercaptoethanol or dithiothreitol. The FSO2BzAdo concentration dependence of the inactivation kinetics is described by a mechanism that includes the equilibrium binding of the reagent to the enzyme prior to a first-order inactivation reaction in addition to effects of reagent hydrolysis. The hydrolysis of the reagent has two effects on the observed kinetics. The first effect is deviation from pseudo-first-order kinetic behavior due to depletion of the reagent. The second effect is the novel protection of the enzyme from inactivation due to binding of the sulfonate hydrolysis product. The rate constant for the hydrolysis reaction, determined independently from the kinetics of F- release, is 0.021 min-1 under these conditions. Determinations of the reaction stoichiometry with 3H-labeled FSO2BzAdo show that the inactivation is associated with the covalent incorporation of 1.08 mol of reagent/mol of enzyme subunit. Ligand protection experiments show that ATP, AMP, dAMP, NADH, 5'-adenylyl imidodiphosphate, and the sulfonate hydrolysis product of FSO2BzAdo provide protection from inactivation. The protection obtained with ATP is not dependent on Mg2+. Less protection is obtained with glycerol, GMP, etheno-AMP, and cAMP. No protection is obtained with CMP, UMP, TMP, etheno-CMP, GTP, or fructose 1,6-bisphosphate. The results are consistent with modification by FSO2BzAdo of a single adenine nucleotide binding site per enzyme subunit.  相似文献   

12.
Tryptic digestion of the fully phosphorylated Ascaris suum pyruvate dehydrogenase complex yielded a single tetradecapeptide containing 2 phosphorylated serine residues. Its amino acid sequence was Tyr-Ser-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Ser(P)-Tyr-Arg and was very similar to one of the tryptic phosphopeptides isolated from mammalian and yeast pyruvate dehydrogenases. At partial phosphorylation, three peptides were isolated which corresponded to the monophosphorylated (sites 1 and 2) and diphosphorylated tetradecapeptides. In contrast to results reported from mammalian complexes, phosphorylation of the ascarid complex paralleled inactivation, and no additional phosphorylation occurred after inactivation was complete. Complete inactivation of the complex was associated with the incorporation of 1.7-1.9 mol of phosphoryl groups/mol of alpha-pyruvate dehydrogenase subunit, and the strict preference of the pyruvate dehydrogenase kinase for site 1 was not observed. Whereas site 1 was initially phosphorylated more rapidly than site 2, at 50% inactivation, 41% of the incorporated phosphoryl groups were incorporated into site 2. In addition, substantial amounts of peptide monophosphorylated at site 2 also accumulated, suggesting that prior phosphorylation at site 1 was not necessary for phosphorylation at site 2. Phosphorylation also caused a marked decrease in the mobility of the alpha-pyruvate dehydrogenase subunit on sodium dodecyl sulfate-polyacrylamide gels and the apparent separation of mono- and diphosphorylated forms of the enzyme. The significance of these observations in the regulation of the unique anaerobic mitochondrial metabolism of A. suum is discussed.  相似文献   

13.
Incubation of 5'-p-fluorosulfonylbenzoyladenosine with the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase led to the formation of an inactive enzyme irreversibly modified with approximately one mol of reagent per mol of subunit. The inactivation reaction followed pseudofirst order kinetics. The rate of inactivation at various reagent concentrations exhibited saturation kinetics implying that the reagent reversibly binds to the enzyme prior to inactivation. The addition of MgATP, MgADP, or MgAMP-PNP to the reaction mixture fully protected the enzyme from inactivation by 5'-p-fluorosulfonylbenzoyladenosine. The reagent was demonstrated to be a competitive inhibitor of MgATP with a Ki of 0.235 mM. Metal-free nucleotides were without effect upon the reaction rate while metal ions alone accelerated the inactivation rate up to 7-fold. The inclusion of casein or synthetic peptide substrate in the incubation mixture did not affect the reaction kinetics. Reaction of 5'-p-fluorosulfonylbenzoyladenosine with the kinase subunit exhibits all of the characteristics of affinity labeling of the MgATP-binding site.  相似文献   

14.
1. Yeast pyruvate kinase was purified to near homogeneity and subjected to chemical modification by trinitrobenzenesulfonate and by P1, P2-bis (5' pyridoxal) diphosphate. 2. Labeled peptides were isolated and their amino acid composition was determined. 3. The results suggest that yeast pyruvate kinase has an essential lysine residue, and that this residue is in a location equivalent to an essential lysine described in the muscle enzyme. 4. Protection experiments indicate that this lysine is located at the nucleotide binding site.  相似文献   

15.
The effect of glucagon on the phosphorylation of pyruvate kinase in 32P-labelled slices from rat liver was investigated. Pyruvate kinase was isolated by immunoadsorbent chromatography. The enzyme was partially phosphorylated in the absence of added hormone (0.2 mol of phosphate/mol of enzyme subunit). Upon incubation with 10?7 M glucagon, the incorporation of [32P]phosphate was 0.6–0.7 mol/mol of enzyme subunit. Concomitantly, the concentration of intracellular cyclic 3′,5′-AMP increased from 0.3 to 3.2 μM. The phosphorylation inhibited the enzyme activity at low concentrations of phosphoenolpyruvate (60% at 0.5 mM). Almost maximal phosphorylation of the enzyme was reached within 2 min after the addition of glucagon. The concentration of hormone giving half maximal effect on the pyruvate kinase phosphorylation was about 7×10?9M. The inactivation of the enzyme paralleled the increase in phosphorylation. It is concluded that pyruvate kinase is phosphorylated in the intact liver cell.  相似文献   

16.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

17.
S P Batra  R F Colman 《Biochemistry》1986,25(12):3508-3515
6-[(4-Bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate (6-BDB-TADP) has been shown to react at the reduced diphosphopyridine nucleotide (DPNH) inhibitory site of bovine liver glutamate dehydrogenase with incorporation of 1 mol of reagent/mol of enzyme subunit [Batra, S. P., & Colman, R. F. (1984) Biochemistry 23, 4940-4946]. The modified enzyme had lost one of the six free sulfhydryl groups per enzyme subunit as detected by 5,5'-dithiobis(2-nitrobenzoate). In the unmodified enzyme digested with trypsin, six cysteinyl peptides labeled with [14C]iodoacetic acid were detected by high-performance liquid chromatography (HPLC), whereas only five were observed in the 6-BDB-TADP-modified enzyme. A cysteinyl peptide has been isolated from modified enzyme digested with trypsin and chymotrypsin. Purification of the nucleotidyl peptide was accomplished by chromatography on phenyl boronate-agarose, followed by gel filtration on Sephadex G-25 and Bio-Gel P-4 in 50 mM ammonium bicarbonate, pH 8.0. The modified peptides were finally purified by HPLC on a C18 column using 0.1% trifluoroacetic acid with an acetonitrile gradient. By comparison of the amino acid composition and N-terminal residue of the isolated peptide with the known amino acid sequence of the enzyme, the peptide in the DPNH inhibitory site labeled by 6-BDB-TADP has been identified as the 19-membered fragment from Glu-311 to Lys-329. A unique residue, Cys-319, was identified as the reactive amino acid within the DPNH inhibitory site.  相似文献   

18.
A new adenine nucleotide analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), has been synthesized. The effectiveness of PLP-AMP as an affinity probe has been tested using a number of nucleotide-binding enzymes. In comparison to reaction with pyridoxal 5'-phosphate, PLP-AMP binds more tightly and exhibits greater specificity of labeling for most enzymes tested. PLP-AMP is a very potent inhibitor of yeast alcohol dehydrogenase and rabbit muscle pyruvate kinase, with complete inhibition obtained upon incorporation of 1 mol of reagent/mol of catalytic subunit. The reagent is also a potent inhibitor of yeast hexokinase and phosphoglycerate kinase. When modified in the absence of substrates, these enzymes require 2 mol of reagent/mol of active site for complete inhibition. However, when modified in the presence of sugar substrates, this stoichiometry decreases to 1.1 for the hexokinase-glucose complex and 1.4 for the phosphoglycerate kinase . 3-phosphoglycerate complex. The most potent inhibition by PLP-AMP was observed with rabbit muscle adenylate kinase. Half-maximal inhibition was obtained at a concentration of approximately 1 microM. In contrast to these examples, PLP-AMP, as well as pyridoxal 5'-phosphate, fails to act as a potent or specific inhibitor of beef heart mitochondrial F1-ATP-ase. The high specificity of labeling and the ability of nucleotide substrates to decrease the rate of inactivation of the kinases and dehydrogenase are consistent with the modification of active site residues. The complete reversibility of both modification and inactivation in the absence of reduction by NaBH4 and the absorption spectra of modified enzymes prior to and following reduction indicate reaction with lysyl residues. We conclude that PLP-AMP holds considerable promise as an affinity label for exploring the structure and mechanism of nucleotide-binding enzymes.  相似文献   

19.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

20.
2-(4-Bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) is an affinity label for the coenzyme-binding site of pig heart NADP+-dependent isocitrate dehydrogenase. Specific reaction occurs at the coenzyme site with an incorporation of 0.5 mol of reagent/mol of enzyme subunit (i.e. modification of only one subunit of the dimeric enzyme) (Bailey, J.M., and Colman, R.F. (1985) Biochemistry 24, 5367-5377). Modified enzyme, prepared by incubating 1 mg/ml isocitrate dehydrogenase with 75 microM 2-BDB-T epsilon A-2',5'-DP in the absence and presence of substrate or coenzyme, was reduced with NaBH4, carboxymethylated, and digested with trypsin. Nucleotidyl peptides were isolated by chromatography on DEAE-cellulose, followed by treatment with acid phosphatase (to decrease the negative charge by removing the phosphate groups from covalently bound reagent) and rechromatography on the same DEAE-cellulose column. The isolated peptides were characterized by amino acid analysis, dansylation, and gas-phase sequencing. A single triskaidekapeptide corresponding to modification of the coenzyme site by 2-BDB-T epsilon A-2',5'-DP was identified as: Asp-Leu-Ala-Gly-X-Ile-His-Gly-Leu-Ser-Asn-Val-Lys. Additional evidence indicated that X is a glutamate residue derivatized by 2-BDB-T epsilon A-2',5'-DP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号