首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maize (Zea mays L.) seedlings were grown in the presence or absence of an herbicide, norflurazon (4-chloro-5-(methylamino)-2-(,,-trifluoro-m-tolyl)-pyridazinone), which prevents the accumulation of colored carotenoids. In the absence of carotenoids, plants grown in high light incur extensive photooxidative damage to their plastids, but relatively little damage elsewhere. Growth in very low light minimizes chlorophyll photooxidation and allows chloroplast development to proceed. We have previously reported that mRNA encoding light-harvesting chlorophyll a/b protein (LHCP) fails to accumulate in high-light-grown carotenoid-deficient seedlings, but accumulates normally in carotenoid-deficient seedlings grown in low light. Here we extend these results by examining the levels of translatable mRNAs encoding seven additional nuclear-encoded chloroplast proteins. When norflurazon-treated seedlings were grown in low light for 8 d and then transferred to high light for 24 h, three cytosolic mRNAs (plastocyanin, Rieske Fe–S protein, and the 33-kdalton (kDa) subunit of the photosystem II O2-evolving complex) decreased to less than 1% the amount found in untreated seedlings. Two other mRNAs (NADP malic enzyme, EC 1.1.1.40, and the 23-kDa subunit of the photosystem II O2-evolving complex) decreased significantly but not to levels as low as the first three. Levels of translatable mRNA for two other chloroplast proteins (pyruvate orthophosphate dikinase, EC 2.7.9.1, and ferredoxin NADP oxidoreductase, EC 1.18.1.2) were not reduced in nonflurazon-treated seedlings after 24 h in high light, but did not show the normal light-induced increase found in untreated plants. Photooxidative damage in the chloroplast thus affects the accumulation of a number of cytosolic mRNAs encoding proteins destined for the chloroplast.Abbreviations Da dalton - FNR ferredoxin NADP oxidoreductase - LHCP light-harvesting chlorophyll a/b-binding protein - poly(A)RNA polyadenylated RNA - PPDK pyruvate orthophosphate dikinase - PSII photosystem II - SDSPAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SSu small subunit (of ribulose-1,5-bisphosphate carboxylase)  相似文献   

2.
Maize seedlings, treated with the herbicide norflurazon to produce a deficiency in carotenoid pigments, were grown in low-fluence-rate light. Under these conditions, which induced chlorophyll biosynthesis while minimizing photooxidation, carotenoid-deficient seedlings showed identical patterns of chloroplast protein accumulation compared with normal seedlings. Carotenoid pigments thus play no direct role in regulating the accumulation of chloroplast proteins. When shifted to high-fluence-rate light, chlorophyll was rapidly photooxidized in carotenoid-deficient seedlings. Chloroplast proteins showed varying degrees of sensitivity to photooxidation. The P-700 apoprotein of photosystem I was rapidly degraded. Most stromal and thylakoid proteins either decreased progressively in photooxidative conditions or appeared to be unaffected. The relative quantity of the light-harvesting chlorophyll a/b-binding protein of photosystem II increased significantly in the first few hours of high-fluence-rate light. It then appeared to be only minimally affected 18 hours after complete photooxidation of chlorophyll.  相似文献   

3.
Summary Mutations or herbicides which inhibit the accumulation of carotenoid pigments in higher plants also result in the arrest of chloroplast development at a very early stage. The cause is extensive photooxidative damage within the chloroplast in the absence of protective carotenoids. Because the extent of photooxidation is dependent upon light intensity, normal chloroplast development can occur when carotenoid-deficient seedlings are grown in very dim light. Normal accumulation of chloroplastic and cytosolic mRNAs encoding chloroplast proteins proceeds only under permissive dim light conditions. Illumination with higher intensity light causes rapid chlorophyll photooxidation and the loss of two cytosolic mRNAs coding for proteins destined for the chloroplast, but does not affect another light-regulated cytosolic mRNA encoding a cytosolic protein. This experimental system may have uncovered a mechanism which coordinates the expression of genes in different cellular compartments.Abbreviations LHCP light-harvesting chlorophyll a/b protein - SSu small subunit - RuBP fibulose 1,5-bisphoshate - PEP phosphoenolpyruvate  相似文献   

4.
5.
The levels of the mRNAs for light-inducible, nuclear-coded chloroplast proteins vary rhythmically in pea (Pisum sativum L.) plants either grown in a dark-light cycle or under constant light conditions. This has been observed for the early light-inducible protein, the light-harvesting chlorophyll a/b protein, and the small subunit of the ribulose-1,5-bisphosphate carboxylase. The mRNA levels are high in the morning, exhibit a minimum in the first half of the night, and increase again during the second half of the night. The amplitude of fluctuation is between 5- and 10-fold. A similar change in the mRNA abundance was found for four nuclear encoded heat-shock proteins of 18, 24, 26, and 30 kilodaltons. The ability of plants to transcribe heat-shock genes upon heat-shock for 2 hours varies through the day. The maxima for induction are found in the second half of the night and the morning. The minima are reached during the afternoon. The degree of fluctuation is between 3- and 5-fold. The levels of mRNAs for cytosolic as well as for plastid heat-shock proteins oscillate in parallel.  相似文献   

6.
We are interested in the mechanism of insertion of proteins into the chloroplast thylakoid membrane and the role that accessory pigments may play in this process. For this reason we have begun a molecular analysis of mutant plants deficient in pigments that associate with thylakoid membrane proteins. We have characterized plants that are homozygous for the previously isolated, recessive mutation chlorina-1 (ch-1) or Arabidopsis thaliana. Despite the lack of chlorophyll b and light-harvesting proteins of photosystem II (LHCPII) near normal levels of LHCPII mRNA are found in the mutant, in contrast to LHCPII mRNA levels in carotenoid-deficient mutants. The LHCPII mRNA of chlorina-1 plants can be translated in vitro so it is likely that LHCPII is not stable in ch-1 plants. Moreover, the thylakoid membranes of ch-1 plants remain appressed even though LHCPII levels are drastically reduced.  相似文献   

7.
8.
The petunia (Petunia [Mitchell]) chloroplast proteins, the chlorophyll a/b-binding (Cab) proteins, and the small subunit of ribulose bisphosphate carboxylase (RbcS) are encoded by nuclear genes that are expressed in a light-dependent manner. The steady-state concentrations of five cab mRNAs vary with a dramatic circadian rhythm in plants grown under a constant diurnal cycle (10 hours light, 14 hours dark). cab mRNA levels reach their maximum during the light period, but begin to drop prior to the dark period. These RNAs fall to their minimum concentration during the dark period and then begin to increase again in anticipation of the light. Within this general pattern, there are variations in expression among specific classes of cab genes. The light harvesting complex of photosystem II LHCII-type 1 cab mRNAs rise to a well-defined maximum at 2 hours prior to the dark period. All but one of these genes are expressed in anticipation of the light period. The LHCII type 2 cab mRNA and the LHC of photosystem I cab mRNA are expressed at more constant levels throughout the light period. The expression of these genes anticipates the light more than does the expression of the LHCII type 1 genes. The steady state mRNA levels for the petunia rbcS genes show no significant diurnal fluctuation.  相似文献   

9.
Two-dimensional gels of in vitro translation products of mRNAs isolated from quiescent wheat (Triticum aestivum) embryos demonstrate the presence of mRNAs encoding heat shock proteins (hsps). There were no detectable differences in the mRNAs found in mature embryos from field grown, from 25°C growth chamber cultivated, or from plants given 38°C heat stresses at different stages of seed development. The mRNAs encoding several developmentally dependent (dd) hsps were among those found in the dry embryos. Stained two-dimensional gels of proteins extracted from 25°C growth chamber cultivated wheat embryos demonstrated the presence of hsps, including dd hsps. A study of the relationship of preexisting hsp mRNAs and the heat shock response during early imbibition was undertaken. Heat shocks (42°C, 90 minutes) were administered following 1.5, 16, and 24 hours of 25°C imbibition. While the mRNAs encoding the low molecular weight hsps decayed rapidly upon imbibition, the mRNAs for dd hsps persisted longer and were still detectable following 16 hours of imbibition. After 1.5 hours of imbibition, the mRNAs for the dd hsps did not accumulate in response to heat shock, even though the synthesis of the proteins was enhanced. Thus, an applied heat shock appeared to lead to the preferential translation of preexisting dd hsp mRNAs. The mRNAs for the other hsps, except hsp 70, were newly transcribed at all of the imbibition times examined. The behavior of the hsp 70 group of proteins during early imbibition was examined by RNA gel blot analysis. The mRNAs for the hsp 70 group were detectable at moderate levels in the quiescent embryo. The relative level of hsp 70 mRNA increased after the onset of imbibition at 25°C and remained high through 25.5 hours of prior imbibition. The maximal levels of these mRNAs at 25°C was reached at 17.5 hours of imbibition. Heat shock caused modest additional accumulation of hsp70 mRNA at later imbibition times.  相似文献   

10.
Chloroplast subfractions were tested with a UV cross-linking assay for proteins that bind to the 5′ untranslated region of the chloroplast psbC mRNA of the green alga Chlamydomonas reinhardtii. These analyses revealed that RNA-binding proteins of 30–32, 46, 47, 60, and 80 kD are associated with chloroplast membranes. The buoyant density and the acyl lipid composition of these membranes are compatible with their origin being the inner chloroplast envelope membrane. However, unlike previously characterized inner envelope membranes, these membranes are associated with thylakoids. One of the membrane-associated RNA-binding proteins appears to be RB47, which has been reported to be a specific activator of psbA mRNA translation. These results suggest that translation of chloroplast mRNAs encoding thylakoid proteins occurs at either a subfraction of the chloroplast inner envelope membrane or a previously uncharacterized intra-chloroplast compartment, which is physically associated with thylakoids.  相似文献   

11.
Regulation of Plastid Gene Expression during Photooxidative Stress   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

12.
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.  相似文献   

13.
14.
The mRNAs for acute-phase proteins and kininogens were found to be increased in the submandibular gland (SMG) and extraorbital and intraorbital lacrimal gland (ELG and ILG) in response to experimentally induced inflammation in rats; i.e., 24 hours after subcutaneous injection of turpentine oil, mRNAs for C-reactive protein (CRP), serum amyloid P component (SAP), and H- and T-kininogens were induced in the SMG, ELG, and ILG of rats, whereas these mRNAs were not detected in the same tissues of normal control rats. The induction of mRNAs for these inflammatory proteins by turpentine oil was preceded by a transient increase in the level of mRNA for tumor necrosis factor-alpha (TNF-alpha) at 6 hours after subcutaneous injection of the oil. This was confirmed by injection of another inflammation inducer, lipopolysaccharide (LPS), which induced the TNF-alpha mRNA in the same way at 6 hours as turpentine oil did. The up-regulation of acute-phase proteins including kininogens in the SMG, ELG, and ILG suggest the existence of a strict defense system in the exocrine glands.  相似文献   

15.
In the Single Protein Production (SPP) method, all E. coli cellular mRNAs are eliminated by the induction of MazF, an ACA-specific mRNA interferase. When an mRNA for a membrane protein, engineered to have no ACA sequences without altering its amino acid sequence, is induced in the MazF-induced cells, E. coli is converted into a bioreactor producing only the targeted membrane protein. Here we demonstrate that three prokaryotic inner membrane proteins, two prokaryotic outer membrane proteins, and one human virus membrane protein can be produced at very high levels, and assembled in appropriate membrane fractions. The condensed SPP (cSPP) system was used to selectively produce isotope-enriched membrane proteins for NMR studies in up to 150-fold condensed culture without affecting protein yields, providing more than 99% cost saving for isotopes. As a novel application of the cSPP system for studies of membrane proteins prior to purification we also demonstrate, for the first time, fast detergent screening by microcoil NMR and well-resolved NMR spectra of several targeted integral membrane proteins obtained without purification.  相似文献   

16.
Euglena gracilis is a fresh‐water flagellate possessing secondary chloroplasts of green algal origin. In contrast with organisms possessing primary plastids, mRNA levels of nucleus‐encoded genes for chloroplast proteins in E. gracilis depend on neither light nor plastid function. However, it remains unknown, if all these mRNAs are trans‐spliced and possess spliced leader sequence at the 5′‐end and if trans‐splicing depends on light or functional plastids. This study revealed that polyadenylated mRNAs encoding the chloroplast proteins glyceraldehyde‐3‐phosphate dehydrogenase (GapA), cytochrome f (PetA), and subunit O of photosystem II (PsbO) are trans‐spliced irrespective of light or plastid function.  相似文献   

17.
18.
Severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), which causes the coronavirus disease 2019, encodes several proteins whose roles are poorly understood. We tested their ability either to directly form plasma membrane ion channels or to change functions of two mammalian plasma membrane ion channels, the epithelial sodium channel (ENaC) and the α3β4 nicotinic acetylcholine receptor. In mRNA-injected Xenopus oocytes, none of nine SARS-CoV-2 proteins or two SARS-CoV-1 proteins produced conductances, nor did co-injection of several combinations. Immunoblots for ORF8, spike (S), and envelope (E) proteins revealed that the proteins are expressed at appropriate molecular weights. In experiments on coexpression with ENaC, three tested SARS proteins (SARS-CoV-1 E, SARS-CoV-2 E, and SARS-CoV-2 S) markedly decrease ENaC currents. SARS-CoV-1 S protein decreases ENaC currents modestly. Coexpressing the E proteins but not the S proteins with α3β4 nicotinic acetylcholine receptors significantly reduces acetylcholine-induced currents. ENaC inhibition does not occur if the SARS-CoV protein mRNAs are injected 24 h after the ENaC mRNAs, suggesting that SARS-CoV proteins affect early step(s) in functional expression of channel proteins. Consistent with the hypothesis that the SARS-CoV-2 S protein-induced ENaC inhibition involves competition for available protease, mutating the furin cleavage site in SARS-CoV-2 S protein partially relieves inhibition of ENaC currents. Extending previous suggestions that SARS proteins affect ENaC currents via protein kinase C (PKC) activation, PKC activation via phorbol 12-myristate 13-acetate decreases ENaC and α3β4 activity. Phorbol 12-myristate 13-acetate application reduced membrane capacitance ~5%, presumably via increased endocytosis, but this decrease is much smaller than the SARS proteins’ effects on conductances. Also, incubating oocytes in Gö-6976, a PKCα and PKCβ inhibitor, did not alter E or S protein-induced channel inhibition. We conclude that SARS-CoV-1 and SARS-CoV-2 proteins alter the function of human plasma membrane channels, via incompletely understood mechanisms. These interactions may play a role in the coronavirus 2019 pathophysiology.  相似文献   

19.
Effects of red and blue light at irradiances from 1.6 to 28.3 micromolar per square meter per second on chloroplast pigments, light-harvesting pigment-proteins associated with photosystem II, and the corresponding mRNA were evaluated in maize (Zea mays L.) plants (OP Golden Bantum) grown for 14 days under 14 hours light/10 hours dark cycles. Accumulation of pigments, pigment-proteins, and mRNA was less in blue than in red light of equal irradiance. The difference between blue and red light, however, varied as a function of irradiance level, and the pattern of this variation suggests irradiance-controlled activation/deactivation (switching) of blue-light receptor. The maximum reduction in blue light of mRNA and proteins associated with light-harvesting complex occurs at lower irradiance levels than the maximum reduction of chlorophylls a and b.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号