首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cationic form of beta-galactosidase (EC 3.2.1.23) from the germinating seeds of Vigna sinensis has been separated from its other isoforms by DEAE-cellulose (DE-52) column chromatography and further purified by gel filtration and affinity chromatography. Polyacrylamide gel electrophoresis of the purified enzyme imparted a single protein band. The molecular mass of the enzyme as determined by Sephadex G-150 gel filtration is 58,800 Da. The optimum temperature and the optimum pH are 60 degrees C and 4.5, respectively. Most of the metal ions tested were inhibitory to the enzyme activity. The enzyme has Km for p-nitrophenyl beta-D-galactoside and o-nitrophenyl beta-D-galactoside of 0.56 and 2.0 mM, respectively. The Ki values of galactose and lactose are 2.4 and 70.0 mM, respectively. The energy of activation of PNPG for the enzyme is 10.3 kcal/mol.  相似文献   

2.
Rat preputial gland beta-glucuronidase [ED 3.2.1.31] was purified by ammonium sulfate precipitation, ethanol fractionation, gel filtration on Sephadex G-200 and crystallization. The purified enzyme appeared homogeneous on electrophoresis in polyacrylamide gel, and on analytical ultracentrifugation and had a molecular weight of approximately 320,000, and a sedimentation coefficient of 12S. SDS polyacrylamide gel electrophoresis indicated that the enzyme consisted of subunits with molecular weight of 79,000, so the native enzyme appeared to be a tetramer. The Km with p-nitrophenyl beta-D-glucosiduronic acid as substrate was about 0.53 mM. The enzyme had a single pH optimum at 4.5. The enzyme had a very low content of sulphur-containing amino acid and contained 5.7 per cent carbohydrate, consisting of mannose, glucose, fucose, galactose, and glucosamine in a ratio of 44;9;6;2;41. Sialic acid was not detected in the crystallized enzyme.  相似文献   

3.
The multiplicity of bovine liver acid beta-galactosidase was investigated. Acid beta-galactosidase activity was measured in the presence of glucono-delta-lactone, which inhibited the neutral beta-galactosidase activity but not the acid beta-galactosidase activity in bovine liver. Three forms of acid beta-galactosidase were separated by Sephadex G-200 gel filtration and the elution pattern of the 4-methylumbelliferyl-beta-galactosidase activity coincided with that of the GM1-beta-galactosidase activity. These forms were relatively stable under acidic conditions (pH 4.5), but the two high molecular weight forms were inclined to dissociate into the low molecular weight form under neutral conditions (pH 7.0). The three forms of the enzyme showed similar pH-optima and apparent Michaelis constants for GM1 ganglioside.  相似文献   

4.
A beta-D-galactosidase from bovine liver was purified to apparent homogeneity. The major purification step was affinity chromatography on a column of D-galactose attached to a Sepharose support activated with divinyl sulfone. Affinity media prepared by binding ligands to Sepharose activated with cyanogen bromide were unsuitable for purification of the enzyme, even though such media have been used to purify beta-D-galactosidases from other sources. The molecular weight of the denatured enzyme was 67,000. The molecular weight of the native enzyme at pH 7.0 was 68,000, and at pH 4.5 or 5.0, was 141,000. These data suggest that the enzyme has a single, fundamental subunit with a molecular weight of 67,000, and that the enzyme exists as a monomer at pH 7.0, and a dimer at pH 4.5 or 5.0. The Vmax values of the enzyme with p-nitrophenyl beta-D-galactoside, p-nitrophenyl beta-D-fucoside, lactose, and beta-Gal-(1----4)-beta-GlcNAc-1---- OC6H4NO2 -p were 10,204, 11,550, 9,479, and 8,859 nmol/min/mg of protein, respectively, and the Km values for these substrates were 0.08, 14.9, 14.2, and 1.6mM, respectively. D-Galactose, beta-D- galactosylamine , p-aminophenyl 1-thio-beta-D-galactoside, and D- galactono -1,4-lactone were competitive inhibitors of the enzyme, with Ki values of 0.9, 0.6, 0.6, and 0.8mM, respectively. The enzyme catalyzed the transfer of the D-galactosyl group from p-nitrophenyl beta-D-galactoside to D-glucose. The pH optimum of the enzyme was 4.5, and the pI was 4.7.  相似文献   

5.
Purification and properties of a thiol protease from rat liver nuclei   总被引:1,自引:0,他引:1  
A thiol protease was purified about 800-fold from the chromatin fraction of rat liver by employing Sepharose 6B gel filtration, chromatofocusing and Sephadex G-100 gel filtration. It was nearly homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis and its molecular weight was about 29000. The isoelectric point of the enzyme was 7.1. The pH optimum for degradation of 3H-labelled ribosomal proteins was 4.5. It is noticeable that the maximal activity was shifted to pH 5.5 by DNA, and that 30-40% of the maximal activity was observed at neutral pH in the presence of DNA. The activity was increased about twice by 2-4 mM dithiothreitol. The protease may be specific for the nuclei because it is different from all lysosomal thiol proteases ever known.  相似文献   

6.
The benzyl 2-methyl-3-hydroxybutyrate dehydrogenase was purified from the cells of baker’s yeast by streptomycin treatment, Sephadex G-50 gel filtration, SP-Sephadex C-50 chromatography, and Toyopearl HW-60F gel filtration. The purified enzyme preparation was homogeneous and the molecular weight was about 31,000 to 32,000. The enzyme was NADPH-dependent and its maximum activity was at pH 7.0 and 45°C. It was stable between pH 6 and 9. The Km values at pH 7.0 were 0.42 mM for benzyl 2-methyl-3-oxobutyrate (1) and 4.2 mM for α-methyl β-hydroxy ester [syn-(2) and anti-(3)]. This enzyme reduced only benzyl 2-methyl-3-oxobutyrate (1) but had no effect on other synthetic substrates.

The reduced products [syn-(2) and anti(3)] produced by the purified enzyme were identified by 400 MHz NMR.  相似文献   

7.
A novel phosphodiesterase from cultured tobacco cells.   总被引:8,自引:0,他引:8  
A novel phosphodiesterase was purified from cultured tobacco cells to a state which appeared homogeneous on polyacrylamide gel electrophoresis. The enzyme hydrolyzed various phosphodiester and pyrophosphate bonds, including p-nitrophenyl thymidine 5'-phosphate, p-nitrophenyl thymidine 3'-phosphate, cyclic nucleotides, ATP, NAD+, inorganic pyrophosphate, dinucleotides, and poly(adenosine diphosphate ribose), which is a polymer synthesized from NAD+. However, it did not hydrolyze highly polymerized polynucleotides. The molecular weight of the native enzyme was estimated as 270 000 to 280 000 by gel filtration on Sephadex G-200 and Bio-Gel A-5m. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the enzyme was composed of subunits with molecular weights calculated to be 75 000. The enzyme did not require divalent cations for activity being fully active in the presence of ethylenediaminetetraacetic acid. The pH optimum for the enzyme was approximately 6 with p-ni-trophenyl thymidine 5'-phosphate or adenosine cyclic 3',5'monophosphate, and 5.3 with NAD+. Double reciprocal plots of the initial velocity against the concentration of p-nitrophenyl thymidine 5'-phosphate gave two apparent Km values of 0.17 and 1.3 mM, suggesting the presence of at least two active sites.  相似文献   

8.
Glyoxalase I catalyzing the conversion of methylglyoxal into S-lactoylglutathione in the presence of glutathione was purified approximately 1,400-fold with 2.9% activity yield from mold, Aspergillus niger. The enzyme consisted of a single polypeptide chain with a relative molecular weight of 36,000 on both SDS-polyacrylamide gel electrophoresis and Sephadex G-150 gel filtration. The enzyme was most active at pH 7.0, 35-37 degrees C. Among the various aldehydes tested, the enzyme was active on methylglyoxal and 4,5-dioxovalerate with Km values of 1.25 and 0.87 mM, respectively. The activity of the enzyme was completely inhibited by Zn2+ at 0.5 mM. An equimolar amount of EDTA (0.5 mM) protected the enzyme from inactivation by Zn2+. EDTA competitively (K1 = 1.3 mM) inhibited the activity of the enzyme. Fe2+ was a potent activator for the enzyme, the activation being approximately 2.4-fold at 0.5 mM.  相似文献   

9.
RNase T2 bound to an affinity adsorbent, 5'-adenylate-aminohexyl-Sepharose 4B, specifically at pH 4.5. The colorless enzyme was eluted only by the simultaneous addition of 2'(3')-AMP (1 mM) and NaCl (greater than 1 M) at pH 4.5. By applying this affinity chromatography to the purification of RNase T2, pure enzyme with a specific activity of 60 was obtained in only four steps and the yield was about 10 times higher than that of the previous purification method. This enzyme preparation was found to be heterogeneous in molecular weight and was separated into two fractions on Sephadex G-75 gel filtration. As the smaller enzyme with a molecular weight of 36,000 was identical with RNase T2 in every property examined, we tentatively designated the larger one with an apparent molecular weight of 80,000 as high molecular weight RNase T2 (RNase T2-L). RNase T2-L was still heterogeneous and was separated into five fractions, RNases T2-L 1-5, by repeated Sephadex G-150 gel filtration. The amino acid and carbohydrate analyses revealed that each of these fractions has a protein moiety in common with RNase T2 and the heterogeneities were due to the carbohydrate content, mainly galactose content.  相似文献   

10.
Isocitrate lyase (EC 4.1.3.1) was purified from acetate-grown cells of Candida brassicae E-17, by ammonium sulfate fractionation and DEAE-cellulose and Sephadex G-200 gel filtration column chromatographies. The purified enzyme was electrophoretically homogeneous. The molecular weight of this enzyme was 290,000 by gel filtration, and it was composed of four identical subunits whose molecular weights were 71,000 each. The pH and temperature optima were 6.8 and 37°C, respectively. The enzyme was stable from pH 6.0 to 7.0. The enzyme was activated by Mg2+ and the maximum activity was obtained with a concentration of 8 mM Mg2+. The enzyme was also activated by Mn2+ and Ba2+. The activity of this enzyme was stimulated by reducing agents. The Km values for dl-isocitrate were 1.5 mM in sodium phosphate buffer and 0.62 mM in imidazole-HCl buffer.  相似文献   

11.
1) Two forms of acid beta-galactosidase [EC 3.1.23] with different molecular weights catalyzing the hydrolysis of GM1-ganglioside and p-nitrophenyl-beta-D-galactoside were separated and purified from porcine spleen. 2) The apparent molecular weights were 400,000-600,000 and 70,000-74,000 for the high (termed Am form) and low (termed A1 form) molecular weight forms, respectively. 3) On examination by sodium dodecyl sulfate (SDS)/polyacrylamide gel electrophoresis, both forms of the enzyme had a common protein band of molecular weight 63,000, and the Am form showed three additional protein bands with molecular weights of 31,000, 21,000, and 20,000. 4) Both forms of the enzyme had similar catalytic functions with regard to pH-optimum, Km, substrate specificity and sensitivity to substrate analogues and other substances such as detergents, bovine serum albumin (BSA) and NaCl. 5) Both forms of the enzyme were fairly stable upon preincubation at 45 degrees C at acidic pH (pH 4.5), but lost their activities at neutral pH (pH 7.0). 6) The A1 form was a monomer at neutral pH (pH 7.0) and formed a dimer at acidic pH (pH 4.5). However, most of the Am form could not be converted to a dimeric form on gel filtration at acidic pH.  相似文献   

12.
A cellulase [EC 3.2.1.4] component was purified from a crude cellulase preparation of Trichoderma viride (Meicelase) by consecutive column chromatography procedures, and was designated as cellulase III. The enzyme was homogeneous on polyacrylamide gel disc electrophoresis. The molecular weight of the enzyme was estimated to be about 45,000 by gel filtration. The optimum pH and temperature of the enzyme were pH 4.5-5.0 and 50 degrees, respectively. The enzyme was stable over the range of pH 4.5-7.5 at 4 degrees for 24 hr, and retained 40% of the original carboxymethylcellulose-saccharifying activity after heating at 100 degrees for 10 min. The enzyme was completely inactivated by 1 mM Hg2+, and partially by 1 mM Ag+ and Cu2+. The enzyme was characterized as a less-random type cellulase on the basis of its action on carboxymethylcellulose. The enzyme split cellohexaose, retaining the beta-configuration of the anomeric carbon atoms in the hydrolysis products. The Km values of cellulase III for cellooligosaccharides decreased in parallel with increase of the chain length of the substrates, while Vmax values showed a tendency to increase. The enzyme produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase III preferentially attacked the aglycone linkage of p-nitrophenyl beta-D-cellobioside. The enzyme was found to catalyze the rapid synthesis of cellotetraose from cellobiose (condensation action).  相似文献   

13.
A constitutive beta-glucosidase of Erwinia herbicola Y46 was studied as a prerequisite to an assessment of its significance in the release of bacteriotoxic aglycones from plant beta-glucosides, and the possible effects of the aglycones on the course of such plant diseases as "fire-blight". The enzyme was purified 86.5-fold from crude extracts of cells grown on yeast beef broth. Ammonium sulfate precipitation, DEAE-cellulose fractionation, and gel filtration through Sephadex G-100 resulted in a preparation having one peak of activity on isoelectrofocussing, on gel filtration through Sephadex G-200, and on polyacrylamide gel electrophoresis. The latter techniques demonstrated, in addition to the major protein band associated with activity, a single minor impurity. The enzyme was active against p-nitrophenyl-beta-glucoside (p-NPG) and phloridzin, but showed only very slight activity against salicin and arbutin, and no detectable activity against beta-methyl-D-glucoside, cellobiose, lactose, and esculin. The production of beta-glucosidase was maximum at the late log phase of growth on yeast beef broth medium and declined somewhat thereafter. The incorporation of inducers (carbohydrates) in defined basal medium resulted in only small variations in specific activity in the resulting cells; The activity (p-NPG substrate) was not inhibited by D-glucose, phloretin, esculin, salicin, arbutin, lactose, or cellobiose, but was slightly inhibited by 1.0 mM phloridzin. Slight inhibition was observed in the presence of sulfhydryl reagents (iodoacetamide, p-chloromercuribenzoate), but sodium azide, ethylene-diaminetetraacetic acid, Cu2+, and Zn2+ ions produced no effect. The activity was stable, in both crude and purified preparations, over the pH ranges 6.0-7.5 (100% activity) and 4.5-greater than 8.5 (50% activity). The enzyme retained 80% activity after 30 min at 50 degrees C, but only 25% after 30 min at 60 degrees C. The enzyme had a mean K-m value (phloridzin) of 1.35 times 10-4 M, an isoelectric point of 4.75, a molecular weight, determined by Sephadex G-200 gel filtration, of about 122 000, and an optimum pH for activity of 6.5-7.0.  相似文献   

14.
Collagenase from the internal organs of a mackerel was purified using acetone precipitation, ion-exchange chromatography on a DEAE-Sephadex A-50, gel filtration chromatography on a Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel, and gel filtration chromatography on a Sephadex G-75 column. The molecular mass of the purified enzyme was estimated to be 14.8 kDa by gel filtration and SDS-PAGE. The purification and yield were 39.5-fold and 0.1% when compared to those in the starting-crude extract. The optimum pH and temperature for the enzyme activity were around pH 7.5 and 55 degrees, respectively. The K(m) and V(max) of the enzyme for collagen Type I were approximately 1.1mM and 2,343 U, respectively. The purified enzyme was strongly inhibited by Hg2+, Zn2+, PMSF, TLCK, and the soybean-trypsin inhibitor.  相似文献   

15.
Purine nucleoside phosphorylase from Enterobacter cloacae KY3074 was partially purified by ammonium sulfate fractionation, column chromatography on DEAE-cellulose and DEAE-Sephadex A-50, and gel filtration on Sephadex G-100 and Sepharose 4B. The molecular weight of the enzyme was calculated to be about 87,000 by a gel filtration method on Sephadex G-200. The enzyme was found to be most active at pH 7.5 to 8.5 and 50°C, stable between pH 7.0 and 7.3, and the activity was nearly lost above 70°C. The enzyme split 2´-deoxyinosine and ribonucleosides. Lineweaver-Burk plots for phosphate were non-linear, showing substrate activation. The break-down of inosine approached an equilibrium when approximately 14% of inosine was phosphorylated.  相似文献   

16.
The occurrence of the two molecular forms, I and II, in the beta-glucuronidase of the liver (hepatopancreas) from the marine mollusc Littorina littorea L. has been demonstrated for the first time. The two forms have been purified 355-fold and 1262-fold, respectively. Form I and II of beta-glucuronidase behave differently on DEAE-cellulose chromatography, polyacrylamide gel disc electrophoresis, isoelectric focusing (pH 5.5 and 4.2, respectively), optimum pH (4.4 and 3.4--4.1, respectively), thermal stability, Km (1.2 mM and 0.5 mM with p-nitrophenyl beta-D-glucuronide, 0.3 mM and 0.15 mM with phenolphthalein beta-D-glucuronide as substrates for form I and II, respectively) and V. Their molecular weight, estimated by gel filtration through Sephadex G-200, was about 250000 for both forms. Several subunits were separated by polyacrylamide gel electrophoresis in presence of sodium dodecyl sulphate. This beta-glucuronidase is a glycoprotein, but sialic acid(s) were not detected. The enzyme was very active on synthetic substrates and also on hexasaccharides and tetrasaccharides containing glucuronic acid residues with beta 1 leads to 3 linkages; it had practially no activity on certain glycosaminoglycans. Hg2+ and glucaro-1,4-lactone were very effective inhibitors of this enzyme; the latter by a competitive mechanism.  相似文献   

17.
A deficiency in alpha-N-acetylglucosaminidase is known as mucopolysaccharidosis IIIB or Sanfilippo B syndrome. We purified this enzyme almost 39,000-fold from liver to homogeneity with 3% recovery. Use of concanavalin A (Con A)-Sepharose and heparin-Sepharose resulted in 13.4-fold and 11.6-fold purifications of the enzymatic activity, respectively. The molecular mass was estimated to be 300 kDa by gel filtration and 80 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The isoelectric point was 5.1, optimal pH was 4.5, and the Km for p-nitrophenyl alpha-N-acetylglucosamine was 0.13-0.20 mM. The purified enzyme was stable at 50 degrees C for 1 h and within the pH range of 6.5-8.5. Anti-serum against the purified enzyme raised in BALB/c mice inhibited the activities of alpha-N-acetylglucosaminidase.  相似文献   

18.
Properties and kinetics of a neutral beta-galactosidase from rabbit kidney   总被引:1,自引:0,他引:1  
A neutral beta-galactosidase has been purified by concanavalin A-Sepharose affinity chromatography, DEAE-cellulose chromatography, Sephadex G-200 gel filtration and hydroxylapatite chromatography. The enzyme was purified 126-fold with a yield of about 21%. This form has a neutral optimal pH (7.5) and it is located in the cytosolic fraction. It shows a wide pH stability from pH 4.5 to 8.0, but it is very unstable at low pH values. Its isoelectric point is 4.9 and this value does not change on neuraminidase treatment. The estimated molecular weight was 47 000. The neutral form shows beta-D-galactosidase, beta-D-fucosidase and beta-D-glucosidase activities, all of them associated in a single peak in all the purification steps. p-Nitrophenyl beta-D-galactosides, p-nitrophenyl beta-D-fucosides and p-nitrophenyl beta-D-glucosides competed fully for a common active site in mixed-substrate experiments. Using gamma-D-galactonolactone as competitive inhibitor the Ki values were always coincident for the three activities. The effect of NaCl, methyl mannoside and some sugars (fucose, galactose and glucose) was studied.  相似文献   

19.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

20.
The isocitrate dehydrogenase from bass liver was purified to homogeneity by gel filtration, affinity and ion exchange chromatographies. The molecular weight was estimated by gel filtration chromatography to about 120,000. Analysis of the enzyme on sodium dodecyl sulphate polyacrylamide gel electrophoresis showed it to be a dimeric protein. The enzyme showed maximum activity in the pH range between 7.0 and 8.0 while its maximum activity was at pH 7.5. DL-Isocitrate and Mn2+ stabilized the enzyme, while NADP had the opposite effect. The Km for isocitrate was 0.31 mM and the Km for NADP was 36 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号