首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete covalent structure of protein C, a protein degraded during germination of Bacillus megaterium spores, has been determined. The intact protein was cleaved with a highly specific spore protease into two peptides, residues 1 to 30 and 31 to 71. The intact protein was also cleaved by cyanogen bromide into two peptides, residues 1 to 27 and 28 to 71. Cleavage of the larger cyanogen bromide peptide with trypsin allowed isolation of the COOH-terminal peptide, residues 59 to 71. Automated sequenator analysis of the intact protein and peptide fragments, together with previously published partial sequence data on this protein and carboxypeptidase A digestion of the intact protein provided data from which the following unique sequence was deduced: (formula: see text). The primary sequence of the C protein shows an extremely high degree of homology with that of the A protein--another protein degraded during germination of B. megaterium spores.  相似文献   

2.
The complete covalent structure of Protein A, a protein degraded during bacterial spore germination, has been determined. The intact protein was cleaved with a highly specific spore protease into two peptides, residues 1 to 21 and 22 to 61. The larger peptide was further cleaved into two fragments with either cyanogen bromide or by trypsin cleavage following arginine modification with cyclohexanedione. The peptides derived from cyanogen bromide fragmentation encompassed residues 22 to 53 and 54 to 61 while trypsin hydrolysis yielded overlapping fragments comprising residues 22 to 48 and 49 to 61. Automated sequenator analysis together with carboxypeptidase Y digestion of the intact protein and the peptide fragments provided data from which the following unique amino acid sequence was deduced. NH2-Ala-Asn-Thr-Asn-Lys-Leu-Val-Ala-Pro-Gly10-Ser-Ala-Ala-Ala-Ile-Asp-Gln-Met-Lys-Tyr20-Glu-Ile-Ala-Ser-Glu-Phe-Gly-Val-Asn-Leu30-Gly-Pro-Glu-Ala-Thr-Ala-Arg-Ala-Asn-Gly40-Ser-Val-Gly-Gly-Glu-Ile-Thr-Lys-Arg-Leu50-Val-Gln-Met-Ala-Glu-Gln-Gln-Leu-Gly-Gly60-Lys-COOH.  相似文献   

3.
Rat atrial natriuretic peptides of relatively low molecular weight have been isolated from the alpha-component of rectum relaxant activity corresponding to about 3,000 daltons, which was obtained as a side fraction in our previous isolation of beta-rat atrial natriuretic polypeptide (beta- rANP ). In contrast to the same fraction from human atria, the rat atrial alpha-component was found to contain six or more distinct but related peptides, eliciting a potent natriuretic activity. Six of them (B-II, C, D, E, B-I and A), containing 35, 33, 32, 31, 28 and 25 amino acid residues, respectively, have been purified to homogeneity and sequenced. All these peptides were found to correspond to the C-terminal sequence of beta- rANP composed of 48 residues, with varying N-terminal elongations. This indicates that these peptides are derived from beta- rANP . Peptide B-I, composed of 28 residues, is identical to alpha-human atrial polypeptide(alpha- hANP ), with a single replacement of Ile for Met at position 12.  相似文献   

4.
Previous work has shown that the degradation of 20% of total protein which occurs early in germination of Bacillus megaterium spores is initiated by an endoprotease. This enzyme is found only in the spore and is active only on the spore proteins degraded during germination. Action of the spore protease in vitro on the three major proteins (Proteins A, B, and C) which are degraded in vivo during germination results in cleavage of one (A and C protein) or two (B protein) peptide bonds. The sequences surrounding the cleavage sites are -Tyr-Glu- Ile-Ala-Ser-Glu-Phe- in the A protein, -Phe-Glu- Ile-Ala-Ser-Glu-Phe- in the C protein, and -Thr-Glu- Phe-Gly-Ser-Glu-Thr-, and -Thr-Glu- Phe-Ala-Ser-Glu-Thr- in the B protein, with cleavage taking place at the glutamyl bond noted by the arrow. The similarity of these four sequences suggests the possibility that the specificity of the spore protease may be due to its requirement for a specific pentapeptide sequence of the type -R-Glu-(Phe or Ile)-(Gly or Ala)-Ser-Glu-R- for recognition and cleavage. However, it is also possible that it is the conformation of the A, B, and C proteins which determines their site of cleavage by the spore protease.  相似文献   

5.
Two blood group B active glycosphingolipids (B-I and B-II) formerly isolated and purified from human B erythrocytes (16) were investigated by mass spectrometry after permethylation. B-I yielded fragments up to m/e 1266 and B-II up to m/e 1495, showing the sequence of six and seven carbohydrate residues respectively. In combination with additional experimental evidence (18) the glycosphingolipids are demonstrated to be a gal-[ fuc ]-gal-glcNAc-gal-glc-ceramide (B-I) and a gal-[ fuc ]-gal-glcNAc-gal-glcNAc-gal-glc-ceramide (B-II). Mass spectrometric evidence for the ceramide residues are also obtained indicating besides spingosine C24-,C24:1-, and C22-fatty acids as main constituents.  相似文献   

6.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

7.
Peptide repeats in a mussel glue protein: theme and variations   总被引:4,自引:0,他引:4  
J H Waite  T J Housley  M L Tanzer 《Biochemistry》1985,24(19):5010-5014
The adhesive protein from Mytilus edulis contains 75-80 closely related, repeated peptide sequences in its primary structure. These peptides can be resolved following digestion with trypsin by reversed-phase high-pressure liquid chromatography. The most frequently repeated sequence is the decapeptide Ala-Lys-Pro-Ser-Tyr-Hyp-Hyp-Thr-Dopa-Lys (peptide E). Variations of this occur in peptides B with Hyp-3 and Dopa-5, C with Dopa-5, and D with Hyp-3, respectively. Lesser amounts of hexapeptides (A and B') that are lacking residues 4-7 also occur. Peptide A has the sequence Ala-Lys-Pro-Thr-Dopa-Lys, whereas B' contains Tyr instead of Dopa. 4-Hydroxyproline occurs at positions 3 and 7 and occasionally at position 6 of the decapeptide; 3-hydroxyproline occurs only at position 6. Adhesiveness of the protein may be related to the repetition of Dopa residues, the catecholic moiety of which has strong hydrogen-bonding and metal-liganding capabilities.  相似文献   

8.
The retinoid affinity label 11[3H]--ionylidene ethylbromoacetate (IEBA) was covalently bound to plasma retinol-binding protein (RBP) and studies were conducted to identify the region of the protein molecule that contained the linkage between the IEBA ligand and RBP. Cleavage by trypsin and cyanogen bromide of the labeled protein followed by high-performance liquid chromatography (HPLC) separation of peptides and identification of radioactive peaks by amino acid analysis points to attachment of the ligand on tryptic peptides T(1+2) (containing residues 1–5) and T(21) (residues 156–163). These two peptides in the native protein molecule are connected by a disulfide bond between Cys-4 and Cys-160. To confirm the site of attachment of the radioactive ligand, unreduced IEBA-RBP with the disulfide bonds intact was treated first with cyanogen bromide and then with trypsin. Separation of the tryptic peptides by HPLC yielded one main peak of radioactivity containing both peptides T(1+2) and T(21), presumably connected by a disulfide bond. Taken together, these results indicated that the sites of attachment of IEBA to RBP are located within the region of the RBP molecule close to the Cys-4–Cys-160 bond, and specifically within the region comprised of amino acid residues 1–5 and 156–163.  相似文献   

9.
Dormant spores Bacillus megaterium contained a group of low-molecular-weight (5,000 to 11,000) basic (pI greater than 9.4) proteins (termed D, E, F, and G proteins) which could be extracted from disrupted spores with strong acids. These proteins were distinct from the previously described A, B, and C proteins which are degraded during spore germination. However, the D, E, F, and G proteins were also rapidly degraded during spore germination, accounting for 10 to 15% of the protein degraded. Proteins similar to the D, E, F, and G species were also present in spores of other bacterial species. In B. megaterium, the D, E, F, and G proteins were low or absent (less than 15% of the spore level) in vegetative and young sporulating cells and appeared only late in sporulation. The D, E, F, and G proteins were purified to homogeneity, and all contained a high percentage of hydrophilic amino acids; one protein (G) contained 31% basic amino acids and also contained tryptophan. All four proteins were rapidly degraded in vitro by dormant spore extracts. Two proteins (D and F) were degraded in vitro by the previously described spore protease which initiates degradation of the A, B, and C proteins in vivo; the spore enzyme (s) degrading proteins E and G have not been identified.  相似文献   

10.
Several properties of the major proteins degraded during germination of spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis have been compared. All of the proteins had low molecular weights (6,000 to 13,000) and lacked cysteine, cystine, and tryptophan. The proteins could be subdivided into two groups: group I (B. megaterium A and C proteins, B. cereus A protein, and B. subtilis alpha and beta proteins) and group II (B. cereus and B. megaterium B proteins and B. subtilis gamma protein). Species in group II had lower levels of (or lacked) the amino acids isoleucine, leucine, methionine, and proline. Similarly, proteins in each group were more closely related immunologically. However, antisera against a B. megaterium group I protein cross-reacted more strongly with the B. megaterium group II protein than with group I proteins from other spore species, whereas antisera against the B. megaterium group II protein cross-reacted most strongly with B. megaterium group I proteins. Analysis of the primary sequences at the amino termini and in the regions of the B. cereus and B. subtilis proteins cleaved by the B. megaterium spore protease revealed that the B. cereus A protein was most similar to the B. megaterium A and C proteins, and the B. cereus B protein and the B. subtilis gamma protein were most similar to the B. megaterium B protein. However, amino terminal sequences within one group of proteins varied considerably, whereas the spore protease cleavage sites were more highly conserved.  相似文献   

11.
As found previously with other Bacillus species, spores of B. stearothermophilus and "Thermoactinomyces thalpophilus" contained significant levels of small, acid-soluble spore proteins (SASP) which were rapidly degraded during spore germination and which reacted with antibodies raised against B. megaterium SASP. Genes coding for a B. stearothermophilus and a "T. thalpophilus" SASP as well as for two B. cereus SASP were cloned, their nucleotide sequences were determined, and the amino acid sequences of the SASP coded for were compared. Strikingly, all of the amino acid residues previously found to be conserved in this group of SASP both within and between two other Bacillus species (B. megaterium and B. subtilis) were also conserved in the SASP coded for by the B. cereus genes as well as those coded for by the genes from the more distantly related organisms B. stearothermophilus and "T. thalpophilus." This finding strongly suggests that there is significant selective pressure to conserve SASP primary sequence and thus that these proteins serve some function other than simply amino acid storage.  相似文献   

12.
Four proteinase inhibitors, A-II, A-III, B-I, and B-II, were isolated from seeds of Albizzia julibrissin (silk tree) of the subfamily Mimosoideae, which is often regarded as the most primitive group of the Leguminosae plants. They were all of the high-molecular weight type (21,600 for A-II and A-III, and 19,000 for B-I and B-II), and composed of two polypeptide chains, linked together by a disulfide bond. A-II (A-III) inhibited bovine trypsin and alpha-chymotrypsin probably at an identical site. B-I (BII) inactivated bovine alpha-chymotrypsin and porcine elastase. Sequence analyses of A-II and B-II revealed a considerable homology with soybean trypsin inhibitor (Kunitz) but suggested the presence of an about 20-amino acid insertion in the A-II molecule.  相似文献   

13.
Proteins HMG 1 and 2 have been digested with trypsin and two major products, stable to further digestion between 8 min and 2 h, have been purified (peptides A and B). Peptide B from HMG 1 has been identified as residues 12-75 and peptide A as residues 94/96-169 by amino acid analyses and Edman degradations. Peptide B spontaneously folds with the formation of 51% helix and exhibits the majority of the perturbed NMR resonances characteristic of folded intact HMG 1. Peptide B is stably folded in the presence of 150 mM NaCl between pH 3 and 10, like intact HMG 1. Peptide A forms 30% alpha-helix and also exhibits tertiary folding but is denatured by pH 10. The 11 N-terminal residues removed by trypsin contain both sites of post-synthetic acetylation (residues 2 and 11), a situation very similar to that found with core histones. It is proposed that HMG 1 and 2 consist of four structural domains, viz: (a) residues 1-11, (b) residues 12 to approximately 75, (c) residues 94-169 and (d) the very acidic region beyond residue 169. The instability of peptide A may mean that it is not a truly independent domain. No structural similarities to histone H1 are therefore observed in HMG 1 and 2.  相似文献   

14.
The complete amino acid sequence of human plasma apolipoprotein C-II isolated from normal individuals and a subject with type V hyperlipoproteinemia has been determined. Apo-C-II contains 79 amino acids with the following amino acid composition: Asp4, Asn1, Thr9, Ser9, Glu7, Gln7, Pro4, Gly2, Ala6, Val4, Met2, Ile1, Leu8, Tyr5, Phe2, Lys6, Arg1, Trp1. Cleavage of apo-C-II by cyanogen bromide produced three peptides designated as CB-1 (9 residues), CB-2 (51 residues), and CB-3 (19 residues). Two peptides, CT-1 (50 residues) and CT-2 (29 residues), which overlapped the cyanogen bromide peptides, were obtained by tryptic digestion of citraconylated apo-C-II at the single arginine residue. The amino acid sequence of apo-C-II was obtained by the automated phenyl isothiocyanate degradation of intact apo-C-II and the peptides produced by cleavage of apo-C-II by cyanogen bromide and trypsin. Phenylthiohydantoins were identified by high performance liquid chromatography and chemical ionization-mass spectrometry. The amino acid sequence of apo-C-II from the normal subject was identical with the apo-C-II isolated from the hyperlipoproteinemic subject.  相似文献   

15.
Acid-soluble spore proteins of Bacillus subtilis   总被引:3,自引:12,他引:3       下载免费PDF全文
Acid-soluble spore proteins (ASSPs) comprise about 5% of the total protein of mature spores of different Bacillus subtilis strains. They consist of three abundant species, alpha, beta, and gamma, four less abundant species, and several minor species, alpha, beta, and gamma make up about 18, 18 and 36%, respectively, of the total ASSPs of strain 168, have molecular weights of 5,900, 5,9000, and 11,000, respectively, and resemble the major (A, C, and B) components of Bacillus megaterium ASSPs in several respects, including sensitivity to a specific B. megaterium spore endopeptidase. However, they have pI's of 6.58, 6.67, and 7.96, all lower than those of any of the B. megaterium ASSPs. Although strains varied in the proportions of different ASSPs, to overall patterns seen on gel electrophoresis are constant. ASSPs are located interior to the cortex, presumably in the spore cytoplasm, and are synthesized during sporulation and degraded during germination.  相似文献   

16.
Spore pool glutamic acid as a metabolite in germination   总被引:5,自引:4,他引:5       下载免费PDF全文
Spore glutamic acid pools were examined in dormant and germinating spores using colorimetric and (14)C analytical procedures. Germination of spores of Bacillus megaterium (parent strain), initiated by d-glucose, was accompanied by a rapid drop in the level of spore pool glutamate, from 12.0 mug/mg of dry spores to 7.7 mug/mg of dry spores after 30 sec of germination. Similar decreases in extractable spore pool glutamate were observed with l-alanine-initiated germination of B. licheniformis spores. On the other hand, glutamate pools of mutant spores of B. megaterium, with a requirement of gamma-aminobutyric acid for spore germination, remained unchanged for 9 min of germination, at which time more than 50% of the spore population had germinated. Evidence for conversion of spore pool glutamate to gamma-aminobutyric acid during germination of spores of B. megaterium (parent strain) was obtained.  相似文献   

17.
The covalent structure of the rat liver 60 S ribosomal subunit protein L37 was determined. Twenty-four tryptic peptides were purified and the sequence of each was established; they accounted for all 111 residues of L37. The sequence of the first 30 residues of L37, obtained previously by automated Edman degradation of the intact protein, provided the alignment of the first 9 tryptic peptides. Three peptides (CN1, CN2, and CN3) were produced by cleavage of protein L37 with cyanogen bromide. The sequence of CN1 (65 residues) was established from the sequence of secondary peptides resulting from cleavage with trypsin and chymotrypsin. The sequence of CN1 in turn served to order tryptic peptides 1 through 14. The sequence of CN2 (15 residues) was determined entirely by a micromanual procedure and allowed the alignment of tryptic peptides 14 through 18. The sequence of the NH2-terminal 28 amino acids of CN3 (31 residues) was determined; in addition the complete sequences of the secondary tryptic and chymotryptic peptides were done. The sequence of CN3 provided the order of tryptic peptides 18 through 24. Thus the sequence of the three cyanogen bromide peptides also accounted for the 111 residues of protein L37. The carboxyl-terminal amino acids were identified after carboxypeptidase A treatment. There is a disulfide bridge between half-cystinyl residues at positions 40 and 69. Rat liver ribosomal protein L37 is homologous with yeast YP55 and with Escherichia coli L34. Moreover, there is a segment of 17 residues in rat L37 that occurs, albeit with modifications, in yeast YP55 and in E. coli S4, L20, and L34.  相似文献   

18.
A proteolytic activity present in spores of Bacillus megaterium has previously been implicated in the initiation of hydrolysis of the A, B, and C proteins which are degraded during spore germination. Four mutants of B. megaterium containing 20 to 30% of the normal level of spore proteolytic activity have been isolated. Partial purification of the protease from wild-type spores by a reviewed procedure resulted in the resolution of spore protease activity on the A, B, and C proteins into two peaks--a major one (protease II) and a minor one (protease I). The protease mutants tested lacked active protease II. All of the mutants exhibited a decreased rate of degradation of the A, B, and C proteins during spore germination at 30 degrees C, but degradation of the proteins did occur. Degradation of the A, B, and C proteins during germination of the mutant spores was decreased neither by blockade of ATP production nor by germination at 44 degrees C. Initiation of spore germination was normal in all four mutants, and all four mutants went through outgrowth, grew, and sporulated normally in rich medium. Similarly, outgrowth of spores of two of the four mutants was normal in minimal medium at 30 degrees C. In the two mutants studied, the kinetics of loss of spore heat resistance and spore UV light resistance during germination were identical to those of wild-type spores. This indicates that the A, B, and C proteins alone are not sufficient to account for the heat or UV light resistance of the dormant spore.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号