首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of Naja nigricollis venom of fibrinogen and highly crosslinked fibrin was examined by SDS-polyacrylamide gel electrophoresis of the reduced products of venom treatment. The venom contains a proteolytic activity which degraded the A alpha-chain of fibrinogen, but had no apparent effect on the B beta- or gamma-chains of the molecule. The venom also readily degraded the alpha-polymer or highly crosslinked fibrin, without apparent cleavage of the beta-chain or the gamma-dimer of fibrin. The venom had no observed effect on plasminogen, indicating that the effects on the A alpha-chain and the alpha-polymer are by direct action of the venom, and not due to activation of plasminogen. The fibrinogenolysis was inhibited by EDTA or 1,10-phenanthroline. Inhibition with EDTA could be reversed by the addition of Zn2+. The fibrinogenolysis was optimal between pH 7 and 8, consistent with the expected pH optimum for a Zn2+ metalloproteinase.  相似文献   

2.
A new technique, reverse fibrin autography, was developed to detect protease inhibitors previously fractionated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Exogenous proteases were incorporated into fibrin-agar indicator films, eventually causing the fibrin to lyse. When an acrylamide gel containing inhibitors was placed on top of such an indicator, the positions of the inhibitors were revealed by the formation of opaque, lysis-resistant zones in the otherwise cleared fibrin film. The technique was versatile in that a variety of inhibitors were revealed, and semiquantitative since the size of the lysis-resistant zone in the indicator increased in proportion to the amount of inhibitor subjected to electrophoresis. This approach could be used not only to detect inhibitors having different protease specificities, but also to distinguish between the inhibitor activities of antibodies directed against urokinase or tissue-type plasminogen activator. Thus, reverse fibrin autography offers a convenient new approach to rapidly screen and partially characterize inhibitors present in complex biological samples.  相似文献   

3.
The kinetic parameters and some enzymatic characteristics of human platelet and chicken gizzard transglutaminases were determined. Activity of the transglutaminases was regulated by calmodulin. These enzymes co-isolated with alpha-actinin and were dissociated from alpha-actinin by gel filtration and absorption onto a calmodulin affinity column. Silver-stained polyacrylamide gels showed that the protein peak eluted by EGTA from this column contained polypeptides of Mr approximately 58,000 and 63,000. The transglutaminases required Ca2+ for incorporation of monodansylcadaverine into casein and actin substrates. Activity was enhanced 3-fold by calmodulin with a biphasic effect, showing stimulation at 10-200 nM and inhibition at concentrations higher than 300 nM. In the presence of 200 nM calmodulin, half-maximal transglutaminase stimulation was obtained with 2.5 microM free [Ca2+]. Chlorpromazine inhibited calmodulin enhancement of the transglutaminases. Activity of the transglutaminases was independent of proteolytic activation, since inhibitors for Ca2+-dependent proteases failed to inhibit filamin cross-linking. For comparison, factor XIIa, a plasma and platelet transglutaminase, required both Ca2+ and thrombin for activation and was insensitive to calmodulin. The cross-linking pattern of fibrin, fibrin monomers, and fibrinogen by the calmodulin-regulated transglutaminases showed, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, disappearance of fibrinogen alpha-chains with no decrease of beta- and gamma-chains or formation of gamma-gamma dimers. By autoradiography, cross-linked products of 125I-fibrinogen revealed heavily labeled high molecular weight polymers and polypeptides of Mr 98,000, 116,000, and 148,000; the latter appeared to be a transient species. However, when fibrin, fibrin monomers, and fibrinogen were used as factor XIIIa substrates, gamma-gamma dimers and alpha-polymers were formed. Formation of gamma-gamma dimers was slower with fibrinogen than with fibrin. Iodoacetamide blocked activity of factor XIIIa but not of the calmodulin-regulated transglutaminases.  相似文献   

4.
EA Ryan  LF Mockros  AM Stern    L Lorand 《Biophysical journal》1999,77(5):2827-2836
We investigated the origins of greater clot rigidity associated with FXIIIa-dependent cross-linking. Fibrin clots were examined in which cross-linking was controlled through the use of two inhibitors: a highly specific active-center-directed synthetic inhibitor of FXIIIa, 1,3-dimethyl-4,5-diphenyl-2[2(oxopropyl)thio]imidazolium trifluoromethylsulfonate, and a patient-derived immunoglobulin directed mainly against the thrombin-activated catalytic A subunits of thrombin-activated FXIII. Cross-linked fibrin chains were identified and quantified by one- and two-dimensional gel electrophoresis and immunostaining with antibodies specific for the alpha- and gamma-chains of fibrin. Gamma-dimers, gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrids were detected. The synthetic inhibitor was highly effective in preventing the production of all cross-linked species. In contrast, the autoimmune antibody of the patient caused primarily an inhibition of alpha-chain cross-linking. Clot rigidities (storage moduli, G') were measured with a cone and plate rheometer and correlated with the distributions of the various cross-linked species found in the clots. Our findings indicate that the FXIIIa-induced dimeric cross-linking of gamma-chains by itself is not sufficient to stiffen the fibrin networks. Instead, the augmentation of clot rigidity was more strongly correlated with the formation of gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrid cross-links. A mechanism is proposed to explain how these cross-linked species may enhance clot rigidity.  相似文献   

5.
Previous experiments had shown that the free N-terminal fibronectin 30-kDa-domain mediates binding of soluble 125I-fibrin to transamidase-coated polystyrene beads (H?rmann et al., Biol. Chem. Hoppe-Seyler 368, 669-674, 1987). Now, the formation of covalent adducts of the N-terminal fragment with fibrin peptide chains is demonstrated. Binding of soluble 125I-fibrin was performed in presence of N-terminal fibronectin 30-kDa or 70-kDa fragments. The material adsorbed was removed from the beads under reducing conditions and analysed by dodecylsulfate gel electrophoresis followed by autoradiography. The 30-kDa fragment gave rise to bands of 80 kDa and 180-200 kDa which were lacking in the products of the 70-kDa compound. Instead, they showed bands at 120 kDa and ca. 280 kDa. Evidently, those bands represented covalent adducts of fibrin peptide chains or their dimers with the 30-kDa or the 70-kDa fragment, respectively. In addition, dimeric gamma-chains and alpha-chain polymers of fibrin were present indicating partial polymerization of bead-attached fibrin.  相似文献   

6.
Congenitally abnormal fibrinogen Kyoto I with impaired fibrin monomer polymerization contains a normal gamma-chain and a gamma-chain variant (gamma Kyoto I) that has an apparently lower Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the Laemmli system (Laemmli, U. K. (1970) Nature 227, 680-685) but migrates with apparently normal Mr in the Weber and Osborn system (Weber, K., and Osborn, M. (1969) J. Biol. Chem. 244, 4406-4412). Reverse-phase high performance liquid chromatographic analyses of the cyanogen bromide or lysyl endopeptidase cleavage fragments of the purified gamma-chains of fibrinogen Kyoto I showed the presence of peptides not seen from normal fibrinogen. Amino acid sequence analysis of these peptides indicated that gamma Asn308 of the gamma-chain variant is replaced by lysine. Purified fragment D1 of fibrinogen Kyoto I also contains two types of D1 gamma-remnants: normal and apparently lower Mr types. Abnormal fragment D1 is cleaved faster to fragments D2 and D3 by plasmin in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) than normal fragment D1, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by immunoblotting using anti-gamma-chain monoclonal antibody. Analysis of peptides released from fragment D1 by plasmin in the presence of EGTA demonstrated the cleavage of the gamma Lys308-Gly309 bond. Fragment D1 of fibrinogen Kyoto I has normal calcium binding properties. The data suggest that a region or conformation containing gamma Asn308 affects the polymerization of fibrin monomers and that the gamma Asn308----Lys replacement causes a conformational change in the gamma-chain which results in the accelerated cleavage of gamma Lys356-Ala357 and gamma Lys302-Phe303 bonds by plasmin and also results in the generation of a new plasmin cleavage site between Lys308 and Gly309 in the presence of EGTA. During these studies, we found that part of the gamma Lys212-Glu213 bond in fragment D1 is cleaved by plasmin in the presence of EGTA.  相似文献   

7.
Plasminogen activator secreted by lymphosarcoma (ascites) of mice was purified up to 163-fold by ammonium sulphate fractionation at 35% saturation and chromatography on p-aminobenzamidine-Sepharose 4B. The purified activator contained specific activity of 9980 IU/mg. The plasminogen activator displayed homogeneity by polyacrylamide slab gel electrophoresis and high performance liquid chromatography. The activator consisted of a single polypeptide chain with an apparent molecular weight of 66,000 daltons as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis under reducing conditions as well as gel filtration on Sephadex G-100. Distinct differences between this activator and urokinase were discernible in respect of specific activities, fibrin affinity and immunochemical properties. The lymphosarcoma activator appears to be of tissue-type origin since it showed gross similarity to standard tissue plasminogen activator in terms of modes of binding to fibrin and immunological attributes.  相似文献   

8.
During blood clotting Factor XIIIa, a transglutaminase, catalyzes the formation of covalent bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of peptide-bound glutamine residues between fibrin molecules. We report that glycyl-L-prolyl-L-arginyl-L-proline (GPRP), a tetrapeptide that binds to the fibrin polymerization sites (D-domain) in fibrin(ogen), inhibits transglutaminase cross-linking by modifying the glutamine residues in the alpha- and gamma-chains of fibrinogen. Purified platelet Factor XIIIa, and tissue transglutaminase from adult bovine aortic endothelial cells were used for the cross-linking studies. Gly-Pro (GP) and Gly-Pro-Gly-Gly (GPGG), peptides which do not bind to fibrinogen, had no effect on transglutaminase cross-linking. GPRP inhibited platelet Factor XIIIa-catalyzed cross-linking between the gamma-chains of the following fibrin(ogen) derivatives: fibrin monomers, fibrinogen and polymerized fibrin fibers. GPRP functioned as a reversible, noncompetitive inhibitor of Factor XIIIa-catalyzed incorporation of [3H]putrescine and [14C]methylamine into fibrinogen and Fragment D1. GPRP did not inhibit 125I-Factor XIIIa binding to polymerized fibrin, demonstrating that the Factor XIIIa binding sites on fibrin were not modified. GPRP also had no effect on Factor XIIIa cross-linking of [3H]putrescine to casein. This demonstrates that GPRP specifically modified the glutamine cross-linking sites in fibrinogen, and had no effect on either Factor XIIIa or the lysine residues in fibrinogen. GPRP also inhibited [14C]putrescine incorporation into the alpha- and gamma-chains of fibrinogen without inhibiting beta-chain incorporation, suggesting that the intermolecular cross-linking sites were selectively affected. Furthermore, GPRP inhibited tissue transglutaminase-catalyzed incorporation of [3H]putrescine into both fibrinogen and Fragment D1, without modifying [3H]putrescine incorporation into casein. GPRP also inhibited intermolecular alpha-alpha-chain cross-linking catalyzed by tissue transglutaminase. This demonstrates that the glutamine residues in the alpha-chains involved in intermolecular cross-linking are modified by GPRP. This is the first demonstration that a molecule binding to the fibrin polymerization sites on the D-domain of fibrinogen modifies the glutamine cross-linking sites on the alpha- and gamma-chains of fibrinogen.  相似文献   

9.
根霉12#发酵产生纤溶酶的酶学性质   总被引:5,自引:0,他引:5  
溶栓疗法是血栓性疾病安全有效的治疗手段,开发新型纤溶酶具有实际应用意义.分离自南方小酒药的根霉12豆粕和麸皮为原料可产生纤溶酶.已采用盐析,疏水层析、离子交换层析和凝胶层析方法对纤溶酶分离提纯.提纯的纤溶酶比活力2143u/mg(尿激酶单位),有直接溶解血栓和激活纤溶酶原的双重溶栓作用,降解纤维蛋白α、β和γ肽链速度快;最适作用温度45℃,适宜作用pH范围6.8~8.8;等电聚焦方法测定该酶等电点8.5±0.1;只分解生色底物N-Succinvl-Ala-Ala-Pro-Phe-pNA,其米氏常数Km为O.23mmol/L,酶转换数Kcat为16.36 s-1;Molish实验和甲苯胺蓝实验均证明该酶为糖蛋白,地衣酚-硫酸法测得该酶含糖量4.70%;EDTA、PMSF、PCMB对该纤溶酶有抑制作用,说明活性中心含有巯基、金属和丝氨酸;N端12个氨基酸序列为NH2-Ser-Val-Ser-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-Gly,与其它生物来源的纤溶酶相比较没有同源性.根霉12#产生的纤溶酶为新型纤溶酶,有希望开发成溶栓药物.  相似文献   

10.
Rat oocytes synthesize tissue plasminogen activator (tPA) in response to stimuli which initiate meiotic maturation. Purified tPA exhibits optimal activity only in the presence of fibrin or fibrin substitutes. Because oocytes are not exposed to fibrin in situ, we investigated the possible stimulation of rat oocyte tPA activity by other endogenous factor(s). Oocytes were obtained from immature female rats which were induced to ovulate with gonadotropins. tPA activity was measured by the plasminogen-dependent cleavage of a chromogenic substrate. Measurements of kinetic parameters with Glu- or Lys-plasminogen revealed a Km for the rat oocyte enzyme of 1.3-2.1 microM compared with 23-24 microM for purified human tPA. Inclusion of the soluble fibrin substitute polylysine lowered the Km of human tPA by 30-fold (0.8 microM) but had no effect on the oocyte tPA Km. Polylysine had no significant effect on the Vmax values. The rate of plasminogen activation catalyzed by oocyte tPA was increased only 4.3-fold by fibrin while fibrin stimulated purified human tPA activity by 15.2-fold. After fractionation of oocyte extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polylysine enhanced oocyte tPA activity as seen by casein zymography. tPA activity in the conditioned medium of a rat insulinoma cell line was also not stimulated with polylysine prior to fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These data suggest that extravascular cells which elaborate tPA may produce stimulatory factor(s) which allow for full tPA activity at physiological concentrations of plasminogen in the absence of fibrin.  相似文献   

11.
In human unbilical artery and vein endothelial cell conditioned medium fibrinolytic inhibitors have been detected by two different techniques. A fast-acting inhibitor of tissue-type plasminogen activator (t-PA)_and urokinase has been detected and quantified by its capacity to neutralize the above-mentioned plasminogen activators in a kinetic assay. By reverse fibrin autography after SDS-polyacrylamide gel electrophoresis a fibrinolytic inhibitor can be detected with a molecular mass of 52 kDa. The mutual relationship between these two inhibitors was studied. Neutralization of the fast-acting inhibitor by t-PA results in the formation of a complex with a molecular mass of 100 kDa. The t-PA added to endothelial cell conditioned medium in excess of the fast-acting inhibitor is fully stable. However, the inhibitor that is detected by SDS-polyacrylamide gel electrophoresis and reverse fibrin autography is not affected by complete neutralization of the fast-acting inhibitor, and removal of the formed complexes by immune adsorption with immobilized anti-t-PA IgG. This suggests that the inhibitor that is detected by SDS-polyacrylamide gel electrophoresis and reverse fibrin autography does not react with t-PA. Moreover, endothelial cell conditioned medium that is depleted of the fast-acting inhibitor does not show lysis resistance when directly applied to the reverse fibrin autography indicator gel (without previous electrophoresis), although the inhibitor is still present in the zymogram after SDS-polyacrylamide gel electrophoresis. This suggests that the inhibitor is induced by the SDS treatment. Heating the endothelial cell conditioned medium for 15 min at 70°C fully destroys the fast-acting inhibitory activity, but leaves the inhibitor that is detected by SDS-polyacrylamide gel electrophoresis and reverse fibrin autography unaffected. Moreover, at least one additional fibrinolytic inhibitor is detected in the zymogram after SDS-polyacrylamide gel electrophoresis. We conclude that the fast-acting inhibitor is not the same as the inhibitor that is detected by SDS-polyacrylamide gel electrophoresis and reverse fibrin autography; the latter inhibitor is not operational in endothelial cell conditioned medium, but is induced by SDS-polyacrylamide gel electrophoresis.  相似文献   

12.
An electrophoretic modification of the conventional fibrin autography that can be used for the detection of plasminogen activators (urokinase type and tissue type) and fibrin-degrading enzymes in complex biological fluids is described. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the proteins and the substrate plasminogen are transferred electrophoretically into the fibrin indicator gel, resulting in an efficient transfer of proteinases as well as high resolution and contrast of fibrinolytic zones caused by plasminogen activator activity. Picogram amounts of human urokinase type plasminogen activator (about 0.002 International Unit) are still detectable. The technique is also applicable to reversed fibrin autography for plasminogen activator inhibitors.  相似文献   

13.
Characterization of pepsin-solubilized bovine heart-valve collagen.   总被引:2,自引:0,他引:2       下载免费PDF全文
Collagens extracted from heart valves by using limited pepsin digestion were fractionated by differential salt precipitation. Collagen types were identified by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, amino acid analysis and cleavage with CNBr. Heart-valve collagen was heterogeneous in nature, consisting of a mixture of type-I and type-III collagens. The identity of type-III collagen was established on the basis of (a) insolubility in 1.7 M-NaC1 at neutral pH, (b) behaviour of this collagen fraction on gel electrophoresis under reducing and non-reducing conditions, (c) amino acid analysis showing a hydroxyproline/proline ratio greater than 1, and (d) profile of CNBr peptides on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showing a peak characteristic for type-III collagen containing peptides alpha1(III)CB8 and alpha1(III)CB3. In addition to types-I and -III collagen, a collagen polypeptide not previously described in heart valves was identified. This polypeptide represented approx. 30% of the collagen fraction precipitated at 4.0 M-NaCl, it migrated between beta- and alpha1-collagen chains on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and its electrophoretic behaviour was not affected by disulphide-bond reduction. All collagen fractions from the heart valves contained increased amounts of hydroxylysine when compared with type-I and -III collagens from other tissues. The presence of beta- and gamma-chains and higher aggregates in pepsin-solubilized collagen indicated that these collagens were highly cross-linked and suggested that some of these cross-links involved the triple-helical regions of the molecule. It is likely that the higher hydroxylysine content of heart-valve collagen is responsible for the high degree of intermolecular cross-linking and may be the result of an adaptive mechanism for the specialized function of these tissues.  相似文献   

14.
This article describes the role John Ferry played in relating the location of cross-linked gamma-chains in fibrin fibrils to the mechanical properties of fibrin clot.  相似文献   

15.
E Suenson  S Thorsen 《Biochemistry》1988,27(7):2435-2443
Plasmin-catalyzed modification of the native plasma zymogen Glu1-plasminogen to its more reactive Lys78 form has been shown to be enhanced in the presence of fibrin. The aim of the present work has been to characterize the influence of fibrinopeptide release, fibrin polymerization, and plasmin cleavage of fibrin on the rate of Lys78-plasminogen formation. 125I-Labeled Glu1- to Lys78-plasminogen conversion was catalyzed by performed Lys78-plasmin, or by plasmin generated during plasminogen activation with tissue plasminogen activator or urokinase. The two forms of plasminogen were quantitated following separation by polyacrylamide gel electrophoresis in acetic acid/urea. Plasmin generated by plasminogen activator was monitored by a fixed-time amidolytic assay. The rate of Lys78-plasminogen formation was correlated, in separate experiments, to the simultaneous, plasmin-catalyzed cleavage of 125I-labeled fibrinogen or fibrin to fragments X, Y, and D. The radiolabeled components were quantitated after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results show that the formation of both bathroxobin-catalyzed des-A-fibrin and thrombin-catalyzed des-AB-fibrin leads to marked stimulation of Lys78-plasminogen formation, whereas inhibition of fibrin polymerization, with Gly-Pro-Arg-Pro, abolishes the stimulatory effect. The rate of Lys78-plasminogen formation varies markedly in the course of fibrinolysis. The apparent second-order rate constant of the reaction undergoes a transient increase upon transformation of fibrin to des-A(B) fragment X polymer and decreases about 10-fold to the level observed during fibrinogenolysis upon further degradation to soluble fragments Y and D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Urokinase-activated human plasma was studied by gel electrophoresis, gel filtration, crossed immunoelectrophoresis and electroimmunoassay with specific antibodies and by assay of esterase and protease activity of isolated fractions. Urokinase induced the formation of different components with plasminogen+plasmin antigenicity. At low concentrations of urokinase, a component with a K(D) value of 0.18 by gel filtration and post beta(1) mobility by gel electrophoresis was detected. The isolated component had no enzyme or plasminogen activity. In this plasma sample fibrinogen was not degraded for 10h, but when fibrin was formed, by addition of thrombin, fibrin was quickly lysed, and simultaneously a component with a K(D) value of 0 and alpha(2) mobility appeared, which was probably plasmin in a complex with alpha(2) macroglobulin. This complex showed both esterase and protease activity. After gel filtration with lysine buffer of the clotted and lysed plasma another two components were observed with about the same K(D) value by gel filtration as plasminogen (0.35), but beta(1) and gamma mobilities by gel electrophoresis. They appeared to be modified plasminogen molecules, and possibly plasmin with gamma mobility. Similar processes occurred without fibrin at higher urokinase concentrations. Here a relatively slow degradation of fibrinogen was correlated to the appearance of the plasmin-alpha(2) macroglobulin complex. The fibrin surface appeared to catalyse the ultimate production of active plasmin with a subsequent preferential degradation of fibrin and the formation of a plasmin-alpha(2) macroglobulin complex. The gel filtration and electrophoresis of the plasma protease inhibitors, alpha(1) antitrypsin, inter-alpha-inhibitor, antithrombin III, and C(1)-esterase inhibitor indicated that any complex between plasmin and these inhibitors was completely dissociated. The beta(1) and post beta(1) components appear to lack correlates among components occurring in purified preparations of plasminogen and plasmin.  相似文献   

17.
Localization of the domains of fibrin involved in binding to platelets   总被引:2,自引:0,他引:2  
The molecular basis of platelet-fibrin interactions has been investigated by using synthetic peptides as potential inhibitors of fibrin protofibril and fibrinogen binding to ADP-stimulated platelets, adhesion of fibrin fibers to the platelet surface, and platelet-mediated clot retraction. Synthetic peptides of sequence RGDS and HHLGGAKQAGDV, corresponding to regions of the fibrinogen alpha- and gamma-chains previously identified as platelet recognition sites, inhibited the binding of radiolabelled soluble fibrin oligomers to ADP-stimulated platelets with IC50 values of 10 and 40 microM, respectively. Synthetic GPRP and GHRP, corresponding to the N-terminal tripeptide sequence of the fibrin alpha-chains and the tetrapeptide sequence of the beta-chains, respectively, were minimally effective in blocking soluble fibrin polymer binding to ADP-stimulated platelets. Platelet functions which are unique to the three-dimensional fibrin network were examined by measurements of the extent of adhesion of fluorophore-labelled fibrin to platelets with a microfluorimetric technique and by light scattering measurements of the time course of clot retraction. Inhibition of fibrin-platelet adhesion by RGDS, HHLGGAKQAGDV and GHRP exhibited a similar, linear dependence reaching 1/2 maximum at about 200 microM, suggesting nonspecific effects. GPRP inhibited fibrin assembly but did not appear to have specific effects on fibrin-platelet adhesion. Only RGDS effected clot retraction, causing a 4-6-fold decrease in rate at 230 microM. These results indicate that fibrinogen and fibrin protofibrils, which are obligatory intermediates on the fibrin assembly pathway, share a set of common platelet recognition sites located at specific regions of the alpha- and gamma-chains of the multinodular fibrin(ogen) molecules. The RGDS site is also involved in mediating interactions between the three-dimensional fibrin network and stimulated platelets.  相似文献   

18.
Polymerization of fibrin is inhibited in the presence of excess fibrinogen fragment D. This study was performed in order to test the proposal that these inhibited solutions contain short linear polymers of fibrin (protofibrils) whose further polymerization is prevented as a result of attachment of a molecule of fragment D at each end. Negative-stain electron micrographs, intrinsic viscosities, angular dependence of light scattering intensity, and kinetics of the increase of the scattered intensity with polymerization all were found to support the above model of the inhibited polymer and to reflect the presence of a broad distribution of the lengths of the inhibited fibrin polymers. Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of polymers stabilized with gamma-dimer cross-links introduced by factor XIIIa demonstrates cross-linking of fragment D to fibrin oligomers. Cross-linked polymers have been separated from excess fragment D by gel exclusion chromatography in 1 M urea. (In the absence of urea, the purified polymers very slowly associate to fibers.) The observation of the relative stability of short isolated inhibited protofibrils and the decrease or absence of inhibition of fibrin gelation when fragment D was added to solutions in which fibrin had been given time to polymerize to long protofibrils demonstrate that the inhibitory effect of fragment D occurs as a result of inhibition of the first fibrin polymerization step.  相似文献   

19.
The binding of human 125I-Glu-plasminogen to human plasmin-degraded fibrin was studied. Treatment of preformed and polymerized fibrin with 0.01 IU plasmin/ml resulted in an increased binding of 125I-Glu-plasminogen depending upon the length of time of preincubation of fibrin with plasmin. Binding reached a plateau of 30% of total added radioactivity after 60 min. At this time, less than 10% of fibrin had been digested. Polyacrylamide/urea/acetic acid gel electrophoresis revealed that the radioiodinated plasminogen bound to plasmin-degraded fibrin was of the Glu form. Computerized non-linear regression analysis of the binding experiments revealed that limited plasmic degradation of fibrin progressively generates high-affinity binding sites (Kd approximately equal to 0.3 microM) for Glu-plasminogen. At the time of maximal Glu-plasminogen binding approximately 5 high-affinity binding sites per 100 molecules of fibrin had been generated. The low-affinity type of binding sites were also identified. These observations describe a new mechanism which exquisitely modulates the plasmic breakdown of fibrin by a continuous renewal of high-affinity binding sites for Glu-plasminogen on the surface of the fibrin gel during the fibrinolytic process.  相似文献   

20.
A method is presented for detection of cross-linking acceptor sites on fibrinogen chains, using monodansyl-cadaverine labeling in the presence of activated fibrin stabilizing factor, and polyacrylamide electrophoresis in the presence of sodium dodecyl sulfate. Fluorescent gamma-chain monomers and dimers were produced at a considerably faster rate than the labeled alpha-chain derivative. Purified fragments X, Y and D were prepared all from the same plasmic digest of fibrinogen. Following incubation with fibrin stabilizing factor, thrombin and monodansyl-cadaverine, they were reduced with beta-mercaptoethanol and examined by sodium dodecyl sulfate/acrylamide electrophoresis. Three gamma-chains (mol. wts 49 000, 42 000 and 39 000) had reacted with dansyl-cadaverine while no alpha-chain remnant took up the label. Additional protein and carbohydrate staining further facilitated identification of the individual subunit chains. At least three critical peptide bonds, located on alpha, beta- and gamma-chain remnants, must be broken during conversion of fragment Y into D and E. Sequential cleavage results in heterogeneous appearance of reduced subunit chains. As a consequence, there exist several molecular entities of fragment Y, all of which may have the same molecular weight though they represent various products of progressive plasmic digestion. Our results are compatible with the model of asymmetric degradation of fibrinogen, according to which fragment X produces 1 mol of fragment E e and 2 mol of the monomeric fragment D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号