首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In recent years, there has been a growing interest in developing bacterial peptide deformylase (PDF) inhibitors as novel antibiotics. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse PDF inhibitors which is useful for designing of potential antibiotics. Twenty one structurally diverse compounds were considered for the generation of quantitative pharmacophore model using HypoGen of Catalyst, further model was validated using 78 compounds. Pharmacophore model demonstrated the importance of two acceptors, one donor and one hydrophobic feature toward the biological activity. The inhibitors were also docked into the binding site of PDF to comprehend the structural insights of the active site. Combination of ligand and structure based methods were used to find the potential antibiotics.  相似文献   

2.
The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes in time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.  相似文献   

3.
Che X  Hu J  Wang L  Zhu Z  Xu Q  Lv J  Fu Z  Sun Y  Sun J  Lin G  Lu R  Yao Z 《Molecular and cellular biochemistry》2011,357(1-2):47-54
Peptide deformylase (PDF) is considered an attractive target for screening novel antibiotics. The PDF from Escherichia coli and Staphylococcus aureus are representative of the gram-negative species type of PDF (type I PDF) and the gram-positive species type of PDF (type II PDF), respectively. They could be used for screening broad-spectrum antibiotics. Herein, we cloned the def gene by PCR, inserted it into plasmid pET-22b-def, and transformed the plasmid into E. coli BL21 (DE3) cells, then the cells were induced by IPTG to express PDF. E. coli Ni(2+)-PDF was extracted and purified by ion-exchange chromatography and gel filtration chromatography. S. aureus PDFs were extracted and purified using the MagExtractor kit. The nickel form of S. aureus PDF was obtained by adding NiCl(2) to all reagents used for purification. Iron-enriched S. aureus PDF was obtained by adding FeCl(3) to the growth medium for E. coli BL21 (DE3) cells and adding FeCl(3) and catalase to all reagents used for purification. The activities of PDFs were analyzed, compared, and grouped according to the experimental conditions that produced optimal activity, and we used actinonin as an inhibitor of PDF and calculated the IC(50) value. We obtained high expression of E. coli and S. aureus PDF with high activity and stability. The function of PDFs was inhibited by actinonin in a dose-dependent manner. Results may be helpful for future mechanistic investigations of PDF as well as high-throughput screening for other PDF inhibitors.  相似文献   

4.
Nguyen KT  Hu X  Colton C  Chakrabarti R  Zhu MX  Pei D 《Biochemistry》2003,42(33):9952-9958
Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Deformylation was for a long time thought to be a feature unique to the prokaryotes, making PDF an attractive target for designing novel antibiotics. However, recent genomic sequencing has revealed PDF-like sequences in many eukaryotes, including man. In this work, the cDNA encoding Homo sapiens PDF (HsPDF) has been cloned and a truncated form that lacks the N-terminal 58-amino-acid targeting sequence was overexpressed in Escherichia coli. The recombinant, Co(2+)-substituted protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is strongly inhibited by specific PDF inhibitors. Expression of HsPDF fused to the enhanced green fluorescence protein in human embryonic kidney cells revealed its location in the mitochondrion. However, HsPDF is much less active than its bacterial counterpart, providing a possible explanation for the apparent lack of deformylation in the mammalian mitochondria. The lower catalytic activity is at least partially due to mutation of a highly conserved residue (Leu-91 in E. coli PDF) in mammalian PDF. PDF inhibitors had no detectable effect on two different human cell lines. These results suggest that HsPDF is likely an evolutional remnant without any functional role in protein formylation/deformylation and validates PDF as an excellent target for antibacterial drug design.  相似文献   

5.
A new spectrophotometric/fluorimetric assay for peptide deformylase (PDF) has been developed by coupling the PDF reaction with that of dipeptidyl peptidase I (DPPI) and using N-formyl-Met-Lys-AMC as substrate. Removal of the N-terminal formyl group by PDF renders the dipeptide an efficient substrate of DPPI, which subsequently removes the dipeptidyl units to release 7-amino-4-methylcoumarin as the chromophore/fluorophore. The PDF reaction is conveniently monitored on a UV-Vis spectrophotometer or a fluorimeter in a continuous fashion. The utility of the assay was demonstrated by determining the catalytic activity of PDF and the inhibition constants of PDF inhibitors. These studies revealed the slow-binding behavior of a previously reported macrocyclic PDF inhibitor. This method offers several advantages over the existing PDF assays and should be particularly useful for screening PDF inhibitors in the continuous fashion.  相似文献   

6.
Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.  相似文献   

7.
Peptidyl deformylase (PDF) is a metallo protease that catalyzes the removal of a formyl group from the N-termini of prokaryotic prepared polypeptides, an essential step in bacterial protein synthesis. Screening of our compound collection using Staphylococcus aureus PDF afforded a very potent inhibitor with an IC(50) in the low nanomolar range. Unfortunately, the compound that contains a hydroxamic acid did not exhibit antibacterial activity (MIC). In order to address the lack of activity in the MIC assay and to determine what portion of the molecule was responsible for binding to PDF, we prepared several analogues. This paper describes our findings that the hydroxamic acid functionality found in 1 is mainly responsible for the high affinity to PDF. In addition, we identified an alternative class of PDF inhibitors, the N-hydroxy urea 18, which has both PDF and antibacterial activity.  相似文献   

8.
Bacterial peptide deformylase (PDF) belongs to a subfamily of metalloproteases catalyzing the removal of the N-terminal formyl group from newly synthesized proteins. We report the synthesis and biological activity of highly potent inhibitors of Mycobacterium tuberculosis (Mtb) PDF enzyme as well as the first X-ray crystal structure of Mtb PDF. Structure–activity relationship and crystallographic data clarified the structural requirements for high enzyme potency and cell based potency. Activities against single and multi-drug-resistant Mtb strains are also reported.  相似文献   

9.
Chlamydia trachomatis is an obligate intracellular bacterium responsible for a number of human diseases. The mechanism underlying the intracellular parasitology of Chlamydiae remains poorly understood. In searching for host factors required for chlamydial infection, we discovered that C. trachomatis growth was effectively inhibited with GM6001 and TAPI-0, two compounds known as specific inhibitors of matrix metalloproteases. The inhibition was independent of chlamydial entry of the cell, suggesting that the loss of extracellular metalloprotease activities of the host cell is unlikely to be the mechanism for the growth suppression. Nucleotide sequences of candidate metalloprotease genes remained unchanged in a chlamydial variant designated GR10, which had been selected for resistance to the inhibitors. Nevertheless, GR10 displayed a single base mutation in the presumable promoter region of the gene for peptide deformylase (PDF), a metal-dependent enzyme that removes the N-formyl group from newly synthesized bacterial proteins. The mutation correlated with an increased PDF expression level and resistance to actinonin, a known PDF inhibitor with antibacterial activity, as compared with the parental strain. Recombinant chlamydial PDF was covalently labeled with a hydroxamate-based molecular probe designated AspR1, which was developed for the detection of metalloproteases. The AspR1 labeling of the chlamydial PDF became significantly less efficient in the presence of excessive amounts of GM6001 and TAPI-0. Finally, the PDF enzyme activity was efficiently inhibited with GM6001 and TAPI-0. Taken together, our results suggest that the metalloprotease inhibitors suppress chlamydial growth by targeting the bacterial PDF. These findings have important biochemical and medical implications.  相似文献   

10.
Macrocyclic peptidyl hydroxamates were designed, synthesized, and evaluated as peptide deformylase (PDF) inhibitors. The most potent compound exhibited tight, slow-binding inhibition of Escherichia coli PDF (K(I)(*)=4.4 nM) and had potent antibacterial activity against Gram-positive bacterium Bacillus subtilis (MIC=2-4 microg/mL).  相似文献   

11.
Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins. Thus inhibition of PDF activity is considered to be one of the most effective antibiotic strategies. Reported herein are the synthesis and structure–activity relationship studies of retro-amide inhibitors based on actinonin, a naturally occurring PDF inhibitor. Analysis of the structure–activity relationships led to the discovery of 7a, which exhibits potent enzyme inhibition and antibacterial activity against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis.  相似文献   

12.
Identification of novel potent bicyclic peptide deformylase inhibitors   总被引:4,自引:0,他引:4  
Screening of our compound collection using Staphylococcus aureus Ni-Peptide deformylase (PDF) afforded a very potent PDF inhibitor with an IC(50) in the low nanomolar range but with poor antibacterial activity (MIC). Three-dimensional structural information obtained from Pseudomonas aeruginosa Ni-PDF complexed with the inhibitor suggested the synthesis of a variety of analogues that would maintain high binding affinity while attempting to improve antibacterial activity. Many of the compounds synthesized proved to be excellent PDF-Ni inhibitors and some showed increased antibacterial activity in selected strains.  相似文献   

13.
Legionella pneumophila is a gram-negative facultative intracellular human pathogen that can cause fatal Legionnaires' disease. Polypeptide deformylase (PDF) is a novel broad-spectrum antibacterial target, and reports of inhibitors of PDF with potent activities against L. pneumophila have been published previously. Here, we report the identification of not one but three putative pdf genes, pdfA, pdfB, and pdfC, in the complete genome sequences of three strains of L. pneumophila. Phylogenetic analysis showed that L. pneumophila PdfA is most closely related to the commonly known gamma-proteobacterial PDFs encoded by the gene def. PdfB and PdfC are more divergent and do not cluster with any specific bacterial or eukaryotic PDF. All three putative pdf genes from L. pneumophila strain Philadelphia 1 have been cloned, and their encoded products have been overexpressed in Escherichia coli and purified. Enzymatic characterization shows that the purified PDFs with Ni2+ substituted are catalytically active and able to remove the N-formyl group from several synthetic polypeptides, although they appear to have different substrate specificities. Surprisingly, while PdfA and PdfB with Zn2+ substituted are much less active than the Ni2+ forms of each enzyme, PdfC with Zn2+ substituted was as active as the Ni2+ form for the fMA substrate and exhibited substrate specificity different from that of Ni2+ PdfC. Furthermore, the catalytic activities of these enzymes are potently inhibited by a known small-molecule PDF inhibitor, BB-3497, which also inhibits the extracellular growth of L. pneumophila. These results indicate that even though L. pneumophila has three PDFs, they can be effectively inhibited by PDF inhibitors which can, therefore, have potent anti-L. pneumophila activity.  相似文献   

14.
Peptide deformylase (PDF) is essential in prokaryotes and absent in mammalian cells, thus making it an attractive target for the discovery of novel antibiotics. We have identified actinonin, a naturally occurring antibacterial agent, as a potent PDF inhibitor. The dissociation constant for this compound was 0.3 x 10(-)(9) M against Ni-PDF from Escherichia coli; the PDF from Staphylococcus aureus gave a similar value. Microbiological evaluation revealed that actinonin is a bacteriostatic agent with activity against Gram-positive and fastidious Gram-negative microorganisms. The PDF gene, def, was placed under control of P(BAD) in E. coli tolC, permitting regulation of PDF expression levels in the cell by varying the external arabinose concentration. The susceptibility of this strain to actinonin increases with decreased levels of PDF expression, indicating that actinonin inhibits bacterial growth by targeting this enzyme. Actinonin provides an excellent starting point from which to derive a more potent PDF inhibitor that has a broader spectrum of antibacterial activity.  相似文献   

15.
Novel nonpeptidic inhibitors of peptide deformylase   总被引:4,自引:0,他引:4  
A novel series of nonpeptidic compounds structurally related to the known anticholesteremic thyropropic acid were found to inhibit Escherichia coli peptide deformylase (PDF), with IC50 values in the low-micromolar range. Kinetic analysis of [4-(4-hydroxyphenoxy)-3,5-diiodophenyl]acetic acid reveals competitive inhibition, with a Ki value of 0.66 +/- 0.007 microM. A structure-activity relationship study demonstrates that the carboxylate is required for activity, while the distal phenolic function can be methylated without significant effect. Either decreasing the number of iodine atoms on the molecule to one or increasing the number of iodine atoms to four results in the loss of an order of magnitude in potency. These compounds are the first nonpeptidic inhibitors disclosed and represent a template from which better inhibitors might be designed.  相似文献   

16.
Chlamydia trachomatis is an obligate intracellular bacterium responsible for a number of health problems, including sexually transmitted infection in humans. We recently discovered that C. trachomatis infection in cell culture is highly susceptible to inhibitors of peptide deformylase, an enzyme that removes the N-formyl group from newly synthesized polypeptides. In this study, one of the deformylase inhibitors, GM6001, was tested for potential antichlamydial activity using a murine genital C. muridarum infection model. Topical application of GM6001 significantly reduced C. muridarum loading in BALB/c mice that were vaginally infected with the pathogen. In striking contrast, growth of the probiotic Lactobacillus plantarum is strongly resistant to the PDF inhibitor. GM6001 demonstrated no detectable toxicity against host cells. On the basis of these data and our previous observations, we conclude that further evaluation of PDF inhibitors for prevention and treatment of sexually transmitted chlamydial infection is warranted.  相似文献   

17.
The discovery of a novel series of peptide deformylase inhibitors incorporating a piperazic acid amino acid found in nature is described. These compounds demonstrated potent in vitro enzymatic potency and antimicrobial activity. Crystal structure analysis revealed the piperazic acid optimized a key contact with the PDF protein that accounted for the increased enzymatic potency of these compounds. We describe lead optimization of the P3′ region of the series that resulted in a compound with good potency against three target organisms. One molecule showed in vivo efficacy in a rat respiratory infection model but ultimately did not meet candidate progression criteria.  相似文献   

18.
Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture.  相似文献   

19.
Unexpected peptide deformylase (PDF) genes were recently retrieved in numerous marine phage genomes. While various hypotheses dealing with the occurrence of these intriguing sequences have been made, no further characterization and functional studies have been described thus far. In this study, we characterize the bacteriophage Vp16 PDF enzyme, as representative member of the newly identified C-terminally truncated viral PDFs. We show here that conditions classically used for bacterial PDFs lead to an enzyme exhibiting weak activity. Nonetheless, our integrated biophysical and biochemical approaches reveal specific effects of pH and metals on Vp16 PDF stability and activity. A novel purification protocol taking in account these data allowed strong improvement of Vp16 PDF specific activity to values similar to those of bacterial PDFs. We next show that Vp16 PDF is as sensitive to the natural inhibitor compound of PDFs, actinonin, as bacterial PDFs. Comparison of the 3D structures of Vp16 and E. coli PDFs bound to actinonin also reveals that both PDFs display identical substrate binding mode. We conclude that bacteriophage Vp16 PDF protein has functional peptide deformylase activity and we suggest that encoded phage PDFs might be important for viral fitness.  相似文献   

20.
Comparative quantitative structure–activity relationship (QSAR) analyses of peptide deformylase (PDF) inhibitors were performed with a series of previously published (British Biotech Pharmaceuticals, Oxford, UK) reverse hydroxamate derivatives having antibacterial activity against Escherichia coli PDF, using 2D and 3D QSAR methods, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR). Statistically reliable models with good predictive power were generated from all three methods (CoMFA r 2 = 0.957, q 2 = 0.569; CoMSIA r 2 = 0.924, q 2 = 0.520; HQSAR r 2 = 0.860, q 2 = 0.578). The predictive capability of these models was validated by a set of compounds that were not included in the training set. The models based on CoMFA and CoMSIA gave satisfactory predictive r 2 values of 0.687 and 0.505, respectively. The model derived from the HQSAR method showed a low predictability of 0.178 for the test set. In this study, 3D prediction models showed better predictive power than 2D models for the test set. This might be because 3D information is more important in the case of datasets containing compounds with similar skeletons. Superimposition of CoMFA contour maps in the active site of the PDF crystal structure showed a meaningful correlation between receptor–ligand binding and biological activity. The final QSAR models, along with information gathered from 3D contour and 2D contribution maps, could be useful for the design of novel active inhibitors of PDF. Figure Superimposition of comparative molecular field analysis (CoMFA) contour plot in the active site of peptide deformylase (PDF)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号