首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed a simple device by which the optimal delay time between optical measurement of a cell and the application of the droplet charging pulse can be determined directly in a flow sorter. The device consists of a stainless steel chamber in which the sorted droplets are collected. In the collection chamber the collected droplets run through a capillary where a continuous fluorescence measurement is made. With a sample of fluorescent particles, the delay time is optimal when the measured fluorescence is maximal. The measuring volume is always filled with the last droplets sorted (about 3,000). With this device, the setting of the delay time can be done in a few seconds without the need for microscopical verification. The fluorescence in the collection chamber is excited and detected via optical fibers using about 10% of the light of the existing laser from the flow cytometer and an extra photomultiplier.  相似文献   

2.
F L Battye  W Darling  J Beall 《Cytometry》1985,6(5):492-494
A simple device has been developed for delivering samples into a flow cytometer. Designed with economy, simplicity, and flexibility in mind, this device, having only one moving part, can be used for sample volumes as small as 20 microliter, for virtually any form of cell sample container, and for a wide range of cell concentrations. It consists essentially of a lever-operated disc valve that allows the cell sample to be loaded into a loop of tubing and then to be injected into the cytometer nozzle under pressure from a saline source. The sampler has lifted the maximum analytical throughput of a FACS II cell sorter to better than 120 samples per hour.  相似文献   

3.
The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2.  相似文献   

4.
K A Kelley 《Cytometry》1989,10(6):796-800
A flow cytometer was equipped with a modified sample station to facilitate on-line addition of mediators to the sample and reduce the time of delivery of the sample to the interrogation point. The ready availability of materials and straightforward nature of this design make modifications simple and facilitate measurements of cellular activation. Parameters such as pH, membrane fluidity, and calcium mobilization are easily measured in this system, because detection can be made less than 4 s after addition of mediator with no interruption of sample flow. The sample station modification is described in detail along with methods for mixing and temperature control.  相似文献   

5.
BACKGROUND: Rapid-mix flow cytometry has emerged as a powerful tool for mechanistic analysis of ligand binding, cell response, and molecular assembly. Although progress has come from improving sample delivery capabilities, little attention has been paid to the volumetric requirements associated with precious biological reagents. METHODS: By using programmable syringes, valves, and other fluidic components, we created a modular, precisely regulated rapid-mix device for the delivery of small-volume samples to the flow cytometer. The device was tested using a bead-based assay in which the binding kinetics between native biotin and fluorescein biotin-bearing beads were characterized. RESULTS: Bead suspensions and reagents paired in 35- to 45-microl aliquots were efficiently mixed by the device and delivered to the flow cytometer. Kinetic data associated with the fluorescein biotin beads were analyzed and used to calibrate the performance characteristics of the device in terms of sample delivery and mixing efficiency. CONCLUSION: The rapid-mix device is capable of detecting subsecond kinetics of biological reactions using microliter volume of samples. Dimensions of the device have been minimized, and the quantitative aspects of sample delivery and analysis have been optimized. Further, the modular design has been optimized for adaptation to a variety of experimental protocols.  相似文献   

6.
In this paper, we describe a bio-fluidic device for adaptive sample pretreatment, in order to optimize the conditions under which absorbance assays can be conducted. This device can be successfully applied to the measurement ofEscherichia coli (E. coli) concentrations using adaptive dilution, with which the dilution ratio can be adjusted during the dilution. Although many attempts have been previously made to miniaturize complex biochemical analyses at the chip scale, very few sample pretreatment processes have actually been miniaturized or automated at this point. Due to the lack of currently available on-chip pretreatments, analytical instruments tend to suffer from a limited range of analysis. This occasionally hinders the direct and quantitative analysis of specific analytes obtained from real samples. In order to overcome these issues, we exploit two novel strategies: dilution with a programmable ratio, and to-and-fro mixing. The bio-fluidic device consists of a rectangular chamber constructed of poly(dimethylsiloxane) (PDMS). This chamber has four openings, an inlet, an outlet, an air control, and an air vent. Each of the dilution cycles is comprised of four steps: detection, liquid drain, buffer injection, and to-and-fro mixing. When using adaptive sample pretreatment, the range in whichE. coli concentrations can be measured is broadened, to an optical density (O. D.) range of 0.3∼30. This device may prove useful in the on-line monitoring of cell concentrations, in both fermenter and aqueous environments.  相似文献   

7.
In vivo nuclear magnetic resonance (NMR) monitoring requires a high-density cell suspension, where cell precipitation should be avoided. We have designed a miniaturized cell agitator that fits entirely into an 8-mm NMR probe but that, being mounted into the instrument, is situated outside of the sensitive area. The device consists of two glass tubes connected in a way that, when gas flow is blown through them, creates influx of cell suspension into the device that returns through apertures. This flow creates continuous circular vortex of the cell suspension in the whole sample volume, whereas there are no moving mechanical parts or gas bubbles crossing the instrument’s sensitive area. The gas flow controls conditions of the cell suspension and removes volatile waste metabolites.  相似文献   

8.
Fluorescence flow cytometry was used to measure the internalization of the fluorescent ligand N-formyl-nle-leu-phe-nle-tyr-lys-fluorescein by human neutrophils. The internalization process was monitored by the accessibility of the receptor-bound fluorescent ligand to quenching following a change in the pH of the extracellular medium from 7.4 to 3.0. In such a pH change, extracellular ligand or fluorescein are quenched immediately (excitation 488 nm). In contrast, intracellular fluorescein (derived from fluorescein diacetate) or intracellular ligand are quenched with half-times of approximately 20 or approximately 40 sec, respectively, at 37 degrees C. The fraction of internalized ligand is calculated by resolving the fast and slow components of the quenching process. Temporal resolution of the internalization process in this system depends upon two factors. We have previously shown that it is possible to examine essentially continuously the kinetics of ligand binding in the nM concentration range without removing the free ligand (Sklar LA, Finney DA, Cytometry 3:161, 1982). We have now modified a Becton Dickinson FACS IV sample head assembly to permit direct addition of reagents into the cell suspension while on-line. This enables us to change the suspension pH and evaluate internalization with a time resolution of a few seconds. We observe that internalized ligand can be detected within 1 min and that the rate is proportional to the number of receptors occupied. The rate is essentially linear over the first few minutes and approximately 60% of the receptor-bound ligand is internalized after 3 min.  相似文献   

9.
Adherent and suspension Baby Hamster Kidney (BHK) 21c13 cells were cultivated in a 2.5-1 stirred-tank reactor with indirect aeration. Cell concentration and viability as well as glucose, lactate, ammonia, and protein concentrations in the medium and intracellular and extracellular activities of the intracellular enzymes were determined off-line. The concentrations of glucose, lactate, ammonia, and the activity of lactate dehydrogenase in the culture medium were monitored on-line. The cell/cell fragment size distribution was determined by laser flow cytometer off-line. In several runs, the size distributions were ascertained on-line by a laser flow cytometer. The influence of lactate, ammonia, and osmotic pressure on the viability and biological parameters of the suspension cells was evaluated. In Roux flasks, lactate and ammonia had considerable influence on the cell properties; in stirred tank reactors, these influences were negligible up to 9.5 g l-1 lactate and 150 mg l-1 NH+4 ion concentrations. The influence of high osmolarity on the biological parameters of the cells was much less in the stirred-tank than in the Roux flasks. The adhesion of adherent cells on a surface was impeded neither by the lactate (up to 6 g l-1) nor by the ammonia concentration (up to 150 mg l-1). However, with increasing osmolarity, the fraction of the cells adhered to a surface reduced to below 5% (at 680 mOsmol l-1).  相似文献   

10.
A new fluid switching flow sorter   总被引:1,自引:0,他引:1  
Conventional cell sorters produce potentially hazardous microdroplets containing dyes and radiolabeled compounds commonly used to identify and trace subpopulations of cells. Many of these substances are potential toxins, mutagens, or carcinogens constituting a risk to personal associated with the sorting device. The separation of living cells for continued study of cell growth from an "in air" sample stream includes the risk of contamination with microorganisms altering the following cultures. To avoid those risks, we have constructed a new capsular flow cytometer sorter which consists of a small chamber completely encasing the sorting mechanism. Data acquisition, analysis, and processing are accomplished by using a microcomputer-based pulse height analyser.  相似文献   

11.
Flow cytometric cell sorting is commonly used to obtain purified subpopulations of cells for use in in vitro and in vivo assays. This can be time-consuming if the subpopulations of interest represent very low percentages of the cell suspension under study. Often the desired subpopulations are identified by two-color immunofluorescence staining. Generally, cell sorting is performed with a flow cytometer configured to trigger on light scatter signals, then sort windows are set based upon the signals from both fluorescent markers. We demonstrate that triggering the cytometer with the fluorescence signal from antibody staining common to both of the desired subpopulations, then sorting the subpopulations based upon staining of a second marker, substantially increases the speed of cell sorting vis-à-vis traditional methods. This is because undesired events are not analysed, allowing an increase in the throughput rate. While desired subpopulations of cells can be obtained by this method, undesired (i.e., nonstaining) cell "contaminants" increase and may require a second sort. The combined time for the initial enrichment sort and a second sort can be less than sorting once using standard methodology. Alternatively, the degree of contamination may be controlled by adjusting the concentration of the cell suspension and by the sample flow rate.  相似文献   

12.
Peptide mapping by capillary electrophoresis (CE) with UV detection is problematic for the characterization of proteins that can only be obtained at low micromolar concentrations. Dilution of peptide fragments during digestion of the protein can further reduce the detection sensitivity in peptide mapping to the point where analysis at sub-micromolar concentrations is not possible. A remedy to this problem is preconcentration (sample enrichment) of the proteolytic digest by solid-phase extraction (SPE). To minimize non-specific adsorptive losses during sample handling, on-line SPE–CE is preferred. However, packed-inlet SPE–CE is not always feasible due to either instrument or sample limitations. We describe here a simple method of preconcentration by discontinuous on-line SPE–CE, specifically applied to peptide mapping in low-pH separation buffer after protein digestion in a solid-phase enzyme microreactor. The SPE–CE system does not require application of a low pressure during electrophoretic separation to overcome reversed electroosmotic flow because the preconcentrator device is disconnected from the separation capillary before the electric field is applied. Up to a 500-fold preconcentration factor can be achieved with this device, which can be reused for many samples. Parameters such as the volume of desorption solution, the adsorption/desorption (chromatographic) process, reproducibility of packing the SPE preconcentrator and effects of sample concentration on the peptide map are investigated.  相似文献   

13.
Factors important in the resolution of cell sub-populations with differing DNA contents were investigated using an EPICS C flow cytometer. Software is available for the EPICS C which permits data from any two histograms to be superimposed or added together before display. Samples of fresh and archival thyroid tissue, stained with propidium iodide, were analysed on the flow cytometer and the peak channel number noted. The photomultiplier (PMT) voltage was increased and the sample analysed again producing a second histogram with a higher peak channel number. The two histograms were added together to simulate a cell suspension with two sub-populations with a different DNA content. By systematically altering the PMT voltage and the number of nuclei included in each analysis, it was possible to examine the importance of DNA index and the percentage of tumor cells with an aneuploid DNA content for both fresh and paraffin-embedded thyroid nuclei. The crucial importance of achieving a low coefficient of variation (CV) was demonstrated and consequently the reservations that pertain when archival material is studied, particularly in tumours where DNA aneuploidy is frequently expressed with a low DNA index.  相似文献   

14.
By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without requiring further preparation. The lysis chamber employs surface enhanced blocking electrodes which possess an etched micro-structured surface and a thin layer of dielectric metal oxide which provides a large effective area and blocks transmission of electrical current. The surface enhanced blocking electrodes enable simultaneous suppression of the rapid onset of electric field screening in the bulk of the cell suspension medium and avoidance of undesired electrochemical processes at the electrode-electrolyte interface. In addition the blocking layer ensures the robustness of the cell lysis device in applications involving prolonged flow-through processing of the microbial cells.  相似文献   

15.
An inexpensive modular perfused chamber (MPC) designed for low- and normal-temperature live-cell imaging is presented. The device consists of four lathed pieces of stainless steel assembled as a cylindrical open chamber that can hold either round or square glass coverslips. The chamber is connected to a thermal-bath operating with recirculation. For image acquisition at 4°C, cooled air is blown toward the coverslip surface to prevent condensation. Principal advantages of this device are thermal stability in the sample environment, rapid response to changes in temperature set point, and easy sample insertion. The device enables the study of dynamic processes in cells governed by large temperature differences such as those imposed by hypothermic preservation of cells (0-4°C) followed by rewarming to normothermia (37°C). The capabilities of the MPC were demonstrated by monitoring the internalization of fluorescent quantum dots (QDs) in rat hepatocytes after hypothermic storage and during rewarming with an inverted microscope.  相似文献   

16.
We have previously demonstrated age-related differences in human lymphocyte membrane fluidity, by use of steady-state polarization measurements on bulk cell suspensions with the fluorescence probe DPH. However, for exact analysis of the possible functional importance of these changes, single-cell measurements were deemed of interest. We have now used an analog division device to measure fluorescence depolarization "p" of DPH in real time with a FACS III flow cytometer. The measurements are reliable, as we have been able to confirm the differences in DPH "p" between monocytes and lymphocytes previously shown in bulk suspension and to demonstrate the expected differences in fluidity of lipid-modulated cells. We also found significant differences in DPH "p" between lymphocytes of young and elderly blood donors. Lymphocyte subsets did not differ in polarization values but did differ in fluorescence intensity with Th less than Ts less than B = NK cells.  相似文献   

17.
Contactless simultaneous positioning of micrometer-sized particles in suspension (e.g., copolymer beads, living cells, silicon microparts) can be performed using ultrasound. Current devices are capable of collecting particles into planes or lines by exciting a resonance in the fluid by means of a piezoelectric transducer located beneath the fluidic cavity and are designed such that a one-dimensional pressure field is created. The focus of this work is to collect cells in distinct point locations for potential drug screening array applications. A device to create two-dimensional arrays of cells within a micromachined chamber is described. The chamber is etched into a silicon wafer and sealed with glass; on the underside of the silicon layer a piezoelectric actuator is attached. A signal is applied to each of two orthogonally aligned strips electrodes defined on the surface of the piezoelectric plate. These two strip electrodes create independently addressable approximately one-dimensional pressure fields. It is shown that by applying the same signal to each electrode a diagonally aligned grid of cells can be produced. However, the independence of the two electrodes allows the application of two signals with slightly different frequencies to be applied which creates a grid of circular cell clumps highly suitable for the identified application. (c)  相似文献   

18.
BACKGROUND: Plug flow cytometry is a recently developed system for the automated delivery of multiple small boluses or "plugs" of cells or particles to the flow cytometer for analysis. Important system features are that sample plugs are of precisely defined volume and that the sample vessel need not be pressurized. We describe how these features enable direct cell concentration determinations and novel ways to integrate flow cytometers with other analytical instruments. METHODS: Adhesion assays employed human polymorphonuclear neutrophils (PMNs) loaded with Fura Red and Chinese hamster ovary (CHO) cells cotransfected with genes for green fluorescent protein (GFP) and human P-selectin. U937 cells expressing the human 7-transmembrane formyl peptide receptor were loaded with the fluorescent probe indo-1 for intracellular ionized calcium determinations. A computer-controlled syringe or peristaltic pump loaded the sample into a sample loop of the plug flow coupler, a reciprocating eight-port valve. When the valve position was switched, the plug of sample in the sample loop was transported to the flow cytometer by a pressure-driven fluid line. RESULTS: In stirred mixtures of PMNs and CHO cells, we used plug flow cytometry to directly quantify changes in concentrations of nonadherent singlet PMNs. This approach enabled accurate quantification of adherent PMNs in multicell aggregates. We constructed a novel plug flow interface between the flow cytometer and a cone-plate viscometer to enable real-time flow cytometric analysis of cell-cell adhesion under conditions of uniform shear. The High Throughput Pharmacology System (HTPS) is an instrument used for automated programming of complex pharmacological cell treatment protocols. It was interfaced via the plug flow coupling device to enable rapid (< 5 min) flow cytometric characterization of the intracellular calcium dose-response profile of U937 cells to formyl peptide. CONCLUSIONS: By facilitating the coupling of flow cytometers to other fluidics-based analytical instruments, plug flow cytometry has extended analytical capabilities in cell adhesion and pharmacological characterization of receptor-ligand interactions.  相似文献   

19.
Flow cell cytometry can be used in a sensitive fluorescent immunoassay to rapidly identify salmonellae of Groups D and E. Staphylococcal Protein A couples with the Fc region of many antibodies, especially immunoglobulin G. When a fluorescent marker, fluorescein isothiocyanate, is conjugated to Protein A, an antibody-antigen reaction can be visualized in a flow cell cytometer with an appropriate optical sensor after excitation. Ten thousand cells were individually analyzed in each cytometer run within a minute. the resultant data, presented as histograms and tables, indicated the number of cells in the suspension reacting positively with the antiserum by fluorescence, cell size, distribution and light scatter. This provides an in-depth analysis of the antibody-antigen reaction not possible with other types of immunoassays.  相似文献   

20.
The monoclonal-antibody production of an immobilized hybridoma cell line cultivated in a fluidized-bed reactor was monitored on-line for nearly 900 h. The monoclonal antibody concentration was determined by an immuno affinity-chromatography method (ABICAP). Antibodies directed against the product, e.g. IgG, were immobilized on a micro-porous gel and packed in small columns. After all IgG present in the sample was bound to the immobilized antibodies, unbound proteins were removed by rinsing the column. Elution of the bound antibodies followed and the antibodies were determined by fluorescence. The analytical procedure was automated with a robotic device to enable on-line measurements. The correlation between the on-line determined data and antibody concentrations measured by HPLC was linear. A sampling system was constructed, which was based on a pneumatically actuated in-line membrane valve integrated into the circulation loop of the reactor. Separation of the cells from the sample stream was achieved by a depth filter made of glass-fibre, situated outside the reactor. Rapid obstruction of the filter by cells or cell debris and contamination of the sample system was avoided by intermittent rinsing of the sample system with a chemical solution. The intermittent rinsing of the filter, which had a surface of 4.8 cm2, resulted in an operational capacity of up to 40 samples (1.0 l total sample volume). Both the sampling system and the analytical device functioned without failure during this long-term culture. The culture temperature was varied between 34 and 40 °C. Raising the temperature from 34 up to 37 °C resulted in a simultaneous increase of growth and specific antibody production rate. Specific metabolic rates of glucose, lactate, glutamine and ammonium stayed constant in this temperature range. A further enhancement of temperature up to 40 °C had a negative effect on the growth rate, whereas the specific monoclonal antibody production rate showed a small increase. The other specific metabolic rates also increased in the temperature range between 38 to 40 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号