首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The appreciation that individual susceptibility to type 2 diabetes (T2D) and related components of the dysmetabolic syndrome has a strong inherited component provides a coherent framework within which to develop a molecular understanding of the pathogenesis of T2D. This review focuses on the main approaches currently adopted by researchers seeking to identify the inherited basis of T2D and the present state of our knowledge. One central theme that emerges is that progress in defining the genetic basis of the common, multifactorial forms of T2D is hindered by etiological heterogeneity: T2D is likely to represent the final common pathway of diverse interacting primary disturbances. Such heterogeneity equally compromises efforts to understand the basis for T2D by use of other approaches, such as cellular biochemistry and classical physiology. Analyses that seek to ally sophisticated physiological characterization with measures of genomic variation are likely to provide powerful tools for redressing the loss of power associated with such heterogeneity.  相似文献   

4.
Virulence of the protozoan parasite Toxoplasma gondii is highly variable and dependent upon the genotype of the parasite. The application of forward and reverse genetic approaches for understanding the genetic basis of virulence has resulted in the identification of several members of the ROP family as key mediators of virulence. More recently, modern genomic techniques have been used to address strain differences in virulence and have also identified additional members of the ROP family as likely mediators. The development of forward and reverse genetic, as well as modern genomic techniques, and the path to the discovery of the ROP genes as virulence factors is reviewed here.  相似文献   

5.
6.
7.
Global approaches to understanding ubiquitination   总被引:1,自引:0,他引:1  
Ubiquitination - the linkage of one or more molecules of the protein ubiquitin to another protein - regulates a wide range of biological processes in all eukaryotes. We review the proteome-wide strategies that are being used to study aspects of ubiquitin biology, including substrates, components of the proteasome and ubiquitin ligases, and deubiquitination.  相似文献   

8.
Molecular approaches to understanding mycorrhizal symbioses   总被引:1,自引:1,他引:0  
Barker  Susan J.  Larkan  Nicholas J. 《Plant and Soil》2002,244(1-2):107-116
Molecular analyses of plant–microbe interactions have become common place in the last two decades. Although there are philosophical considerations about the application of a reductionist approach to some areas of research, the collaborative interface (e.g. molecular ecology) can provide specialised insight to the generalist, whilst adding broader relevance to the research of the specialist. However, the expense of this discipline has tended to restrict research to work on model host–microbe interactions. Molecular techniques were embraced early on by a few pioneers from the field of mycorrhizal research. Despite some high profile research, the number of molecular mycorrhizal publications has only recently begun to escalate. However the extent of literature now has exceeded the capacity for a comprehensive short review. In this paper we will briefly discuss the use of model species for molecular research and explore the range of questions that are being addressed using molecular techniques, whilst minimising use of specific jargon, to maximise the usefulness of this review to a non specialist audience. Our primary focus is on arbuscular mycorrhizal symbiosis, to complement the papers by Tagu et al., Podila et al. and Chalot et al. (all this volume), who have addressed aspects of research on ectomycorrhizal symbioses. Here we include specific citations from research groups around the world, along with reference to more detailed reviews, to provide a taste of the current excitement in this fundamental and rapidly evolving research field.  相似文献   

9.
Jason Swedlow 《Genome biology》2000,1(1):reports403-2
A report on work with small-molecule inhibitors of cellular processes presented at the 39th Annual Meeting of the American Society for Cell Bilogy, Washington DC, December 11-15, 1999  相似文献   

10.
11.
12.
13.
Molecular approaches to understanding auxin action   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
16.
Molecular genetics has greatly increased the understanding of diseases in which there is a single gene defect such as cystic fibrosis. Discovering the gene responsible and its function not only helps determine the pathogenesis of the disease but also offers a possible treatment-gene therapy. Polygenic disorders such as diabetes may soon yield their secrets to the same approach. Animal models of genetic diseases are proving useful research tools, and transgenesis has made xenografting possible. Furthermore, antisense technology allows specific inhibition of undesirably overexpressed genes such as those driving unwanted vascular cell proliferation and restenosis after angioplasty. The completion of the human genome project should make the search for "disease" gene much quicker and will increase still further the importance of these gene based approaches toward diseases.  相似文献   

17.
The analysis of stimulus/response patterns using information theoretic approaches requires the full probability distribution of stimuli and response. Recent progress in using information-based tools to understand circuit function has advanced understanding of neural coding at the single cell and population level. In advances over traditional reverse correlation approaches, the determination of receptive fields using information as a metric has allowed novel insights into stimulus representation and transformation. The application of maximum entropy methods to population codes has opened a rich exploration of the internal structure of these codes, revealing stimulus-driven functional connectivity. We speculate about the prospects and limitations of information as a general tool for dissecting neural circuits and relating their structure and function.  相似文献   

18.
Answers to long-standing questions concerning the molecular mechanism of auxin action and auxin's exact functions in plant growth and development are beginning to be uncovered through studies using mutant and transgenic plants. We review recent work in this area in vascular plants. A number of conclusions can be drawn from these studies. First, auxin appears essential for cell division and viability, as auxin auxotrophs isolated in tissue culture are dependent on auxin for growth and cannot be regenerated into plants even when auxin is supplied exogenously. Secondly, plants with transgenes that alter auxin levels are able to regulate cellular auxin concentrations by synthesis and conjugation; wild-type plants are probably also capable of such regulation. Thirdly, the phenotypes of transgenic plants with altered auxin levels and of mutant plants with altered sensitivity to auxin confirm earlier physiological studies which indicated a role for auxin in regulation of apical dominance, in development of roots and vascular tissue, and in the gravitropic response. Finally, the cloning of a mutationally identified gene important for auxin action, along with accumulating biochemical evidence, hints at a major role for protein degradation in the auxin response pathway.  相似文献   

19.
Combined molecular and epidemiological studies are advancing our understanding of the genetic basis of multifactorial diseases. Several of the results obtained during the past year highlight methodological issues associated with these approaches. For example, the affected sib-pair method has been applied successfully to detect linkage between the angiotensinogen gene and susceptibility to hypertension, and a large multi-centre epidemiological study has demonstrated association of a polymorphism of the angiotensin-converting enzyme gene with increased risk of myocardial infarction. The study of Mendelian forms of multifactorial diseases has also led to many new results. These include the characterization of mutations in the glucokinase gene in maturity onset diabetes of the young, localization to chromosome 2 of a gene involved in familial colon cancer, and localization to chromosome 19 of a gene responsible for hemiplegic migraine. New insights have been provided into the genetics of multifactorial disorders such as diabetes and hypertension through the study of animal models. Localization of susceptibility loci in such models has recently led to the identification of new candidate genes that may be implicated in disease.  相似文献   

20.
Genetic approaches to auxin action   总被引:12,自引:0,他引:12  
Answers to long-standing questions concerning the molecular mechanism of auxin action and auxin's exact functions in plant growth and development are beginning to be uncovered through studies using mutant and transgenic plants. We review recent work in this area in vascular plants. A number of conclusions can be drawn from these studies. First, auxin appears essential for cell division and viability, as auxin auxotrophs isolated in tissue culture are dependent on auxin for growth and cannot be regenerated into plants even when auxin is supplied exogenously. Secondly, plants with transgenes that alter auxin levels are able to regulate cellular auxin concentrations by synthesis and conjugation; wild-type plants are probably also capable of such regulation. Thirdly, the phenotypes of transgenic plants with altered auxin levels and of mutant plants with altered sensitivity to auxin confirm earlier physiological studies which indicated a role for auxin in regulation of apical dominance, in development of roots and vascular tissue, and in the gravitropic response. Finally, the cloning of a mutationally identified gene important for auxin action, along with accumulating biochemical evidence, hints at a major role for protein degradation in the auxin response pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号