首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The size distribution of the language populations in New Guinea, which represent over 15% of the world's languages, is analysed using models analogous to the resource division models of species abundance distribution in ecological communities. A model distribution of resource segments reflecting population size is created by repeated selection of an existing resource segment and its division into two. We found that any dependency of the selection probability on the size of the segment generated negatively skewed abundance distributions after log transformation. Asymmetric segment division further exacerbated the negative skewness. Size-independent selection produced lognormal abundance distributions, irrespective of the segment division method. Size-dependent selection and asymmetric division were deemed reasonable assumptions since large language populations are more likely to generate isolates, which develop into new populations, than small ones, and these isolates are likely to be small relative to the progenitor population. A negatively skewed distribution of the log-transformed population sizes was therefore expected. However, the observed distributions were lognormal, scale invariant for areas containing between 100 and over 1000 language populations. The dynamics of language differentiation, as reflected by the models, may therefore be unimportant relative to the effect of variable growth rates among populations. All lognormal distributions from resource division models had a higher variance than the observed one, where half of the 1053 populations had between 350 and 3000 individuals. The possible mechanisms maintaining such a low variance around a modal population size of 1000 are discussed.  相似文献   

3.
The frequency responses of 11 rapidly adapting (RA) fibers in cat were studied by representing the average firing rate as a function of sinusoidal stimulus amplitude and stimulus frequency. Specifically, rate-intensity functions at different stimulation frequencies were fitted by four-parameter (a0, a1, a2, a3), piece-wise linear functions using nonlinear regression (n = 59; R2 > 0.877). Rate-intensity functions at intermediate frequencies were found by linear interpolation. The result of this analysis is rate-amplitude-frequency functions plotted as two-dimensional surfaces. The surfaces consist of five regions separated and sufficiently defined by four space curves. At 14 different frequencies, the statistical distribution of each rate-intensity-function parameter could be approximated by a particular lognormal distribution (n = 56; R2 > 0.796). The Kolmogorov-Smirnov test fails to reject this hypothesis for each combination of frequency and parameter (56 tests; p > 0.39). Therefore, at a given frequency, the variation of the parameters can be represented by lognormal distributions with specific means and standard deviations. Responses of six RA fibers, which are different from the data-set used for modeling, were compared with the stochastic model at different frequencies. The parameters of those fibers were tested against the null hypotheses that they were sampled from the particular parameter distributions dictated by the model. The Kolmogorov-Smirnov test fails to reject all the hypotheses at the alpha = 0.05 level (44 tests). At the alpha = 0.10 level, only a few test parameters were found to be departing from the model (a0 and a1 at 5 Hz; a2 at 20 Hz; a2 and a3 at 50 Hz). The remaining test parameters could be accurately described by the model. Having confirmed the validity of the model, the logarithmic means and the logarithmic standard deviations of the lognormally distributed rate-intensity-function parameters were estimated in the frequency range of 4-200 Hz. The rate-amplitude-frequency surfaces sampled from the established stochastic model completely characterize the rate responses of RA fibers to sinusoidal stimuli and are superior to tuning curves which require selecting criterion responses. The current rate-response model is promising for future computational work, especially on population modeling.  相似文献   

4.
为解释塔里木荒漠河岸林群落构建和物种多度分布格局形成的机理, 本文以塔里木荒漠河岸林2个不同生境(沙地、河漫滩) 4 ha固定监测样地为研究对象, 基于两样地物种调查数据, 采用统计模型(对数级数模型、对数正态模型、泊松对数正态分布模型、Weibull分布模型)、生态位模型(生态位优先占领模型、断棍模型)和中性理论模型(复合群落零和多项式模型、Volkov模型)拟合荒漠河岸林群落物种多度分布, 并用K-S检验与赤池信息准则(AIC)筛选最优拟合模型。结果表明: (1)随生境恶化(土壤水分降低), 植物物种多度分布曲线变化减小, 群落物种多样性、多度和群落盖度降低, 常见种数减少。(2)选用的3类模型均可拟合荒漠河岸林不同生境群落物种多度分布格局, 统计模型和中性理论模型拟合效果均优于生态位模型。复合群落零和多项式模型对远离河岸的干旱沙地生境拟合效果最好; 对数正态模型和泊松对数正态模型对洪水漫溢的河漫滩生境拟合效果最优; 中性理论模型与统计模型无显著差异。初步推断中性过程在荒漠河岸林群落构建中发挥着主导作用, 但模型拟合结果只能作为推断群落构建过程的必要非充分条件, 不能排除生态位过程的潜在作用。  相似文献   

5.
We have examined the statistical requirements for the detection of mixtures of two lognormal distributions in doubly truncated data when the sample size is large. The expectation-maximization algorithm was used for parameter estimation. A bootstrap approach was used to test for a mixture of distributions using the likelihood ratio statistic. Analysis of computer simulated mixtures showed that as the ratio of the difference between the means to the minimum standard deviation increases, the power for detection also increases and the accuracy of parameter estimates improves. These procedures were used to examine the distribution of red blood cell volume in blood samples. Each distribution was doubly truncated to eliminate artifactual frequency counts and tested for best fit to a single lognormal distribution or a mixture of two lognormal distributions. A single population was found in samples obtained from 60 healthy individuals. Two subpopulations of cells were detected in 25 of 27 mixtures of blood prepared in vitro. Analyses of mixtures of blood from 40 patients treated for iron-deficiency anemia showed that subpopulations could be detected in all by 6 weeks after onset of treatment. To determine if two-component mixtures could be detected, distributions were examined from untransfused patients with refractory anemia. In two patients with inherited sideroblastic anemia a mixture of microcytic and normocytic cells was found, while in the third patient a single population of microcytic cells was identified. In two family members previously identified as carriers of inherited sideroblastic anemia, mixtures of microcytic and normocytic subpopulations were found. Twenty-five patients with acquired myelodysplastic anemia were examined. A good fit to a mixture of subpopulations containing abnormal microcytic or macrocytic cells was found in two. We have demonstrated that with large sample sizes, mixtures of distributions can be detected even when distributions appear to be unimodal. These statistical techniques provide a means to characterize and quantify alterations in erythrocyte subpopulations in anemia but could also be applied to any set of grouped, doubly truncated data to test for the presence of a mixture of two lognormal distributions.  相似文献   

6.

Purpose

Life cycle inventory (LCI) results are often assumed to follow a lognormal distribution, while a systematic study that identifies the distribution function that best describes LCIs has been lacking. This paper aims to find the distribution function that best describes LCIs using Ecoinvent v3.1 database using a statistical approach, called overlapping coefficient analysis.

Methods

Monte Carlo simulation is applied to characterize the distribution of aggregate LCIs. One thousand times of simulated LCI results are generated based on the unit process-level parametric uncertainty information, from each of which 1000 randomly chosen data points are extracted. The 1 million data points extracted undergo statistical analyses including Shapiro-Wilk normality test and the overlapping coefficient analysis. The overlapping coefficient is a measure used to determine the shared area between the distribution of the simulated LCI results and three possible distribution functions that can potentially be used to describe them including lognormal, gamma, and Weibull distributions.

Results and discussion

Shapiro-Wilk normality test for 1000 samples shows that average p value of log-transformed LCI results is 0.18 at 95 % confidence level, accepting the null hypothesis that LCI results are lognormally distributed. The overlapping coefficient analysis shows that lognormal distribution best describes the distribution of LCI results. The average of overlapping coefficient (OVL) for lognormal distribution is 95 %, while that for gamma and Weibull distributions are 92 and 86 %, respectively.

Conclusions

This study represents the first attempt to calculate the stochastic distributions of the aggregate LCIs covering the entire Ecoinvent 3.1 database. This study empirically shows that LCIs of Ecoinvent 3.1 database indeed follow a lognormal distribution. This finding can facilitate more efficient storage and use of uncertainty information in LCIs and can reduce the demand for computational power to run Monte Carlo simulation, which currently relies on unit process-level uncertainty data.
  相似文献   

7.
《Ecological Complexity》2007,4(3):128-147
A series of studies have suggested that abundance and morphology distributions approximate the lognormal in undisturbed communities and depart from the lognormal with disturbance. However, this proposed capability to indicate ecosystem status has been challenged on theoretical, methodological and statistical grounds. This paper quantifies the departure from the lognormal in natural communities, and the sensitivity of such departures to disturbance, species richness, sample size, temporal and spatial scale, taxa, methodological protocols and other confounding factors. We have conducted a rigorous test of the hypothesis that distance to the lognormal represents a powerful indicator of ecosystem status. We tested three measures of distance to the lognormal and their sensitivity by reviewing 38 case studies and simulated community patterns and examined the potential and pitfalls of the approach. The most robust parameter for measuring the departure from the lognormal was found to be the normalized distance to the lognormal (ΔL). ΔL proved to be a reliable and adaptable indicator of disturbance, which is effective over a broad range of biological systems (terrestrial and aquatic, most taxa, social and economic). We show that ΔL can be measured either by quantifying abundance or by organism size, a cheaper and easy to obtain metric. Abundance distributions provide an indication of system status on a shorter time scale than size distribution. Taken together, they provide clues to the direction in which the system is moving. The sensitivity analysis shows which methods will lead to consistent results across disciplines. Our simulations confirm that disturbance consistently pushes complex systems away from the lognormal pattern, as suggested by empirical data. We conclude that the departure from the lognormal can be used as an indicator of status of a dynamic ecosystem as long as appropriate procedures are followed. Systems approximating the lognormal (ΔL close to 0) can usually be considered self-organized and little disturbed by external influences.  相似文献   

8.
Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.  相似文献   

9.
The development of primary cancers and their subsequent metastases occur through a complex sequence of discrete steps. A hypothesis is proposed here whereby the time available for the growth of metastases is normally distributed, presumably as a consequence of the summation of multiple independently distributed time intervals from each of the steps and of the Central Limit Theorem. For exponentially growing metastases, the corresponding size distribution would be lognormal; Gompertzian growth would imply a modified (Gompertz-normal) distribution, where larger metastases would occur less frequently as a consequence of a decreased growth rate. These two size distributions were evaluated against 18 human autopsy cases where precise size measurements had been collected from over 3900 macroscopic hematogenous organ metastases. The lognormal distribution provided an approximate agreement. Its main deficiency was a tendency to over-represent metastases greater than 10 mm diameter. The Gompertz-normal distribution provided more stringent agreement, correcting for this over-representation. These observations supported the hypothesis of normally distributed growth times, and qualified the utility of the lognormal and Gompertz-normal distributions for the size distribution of metastases.  相似文献   

10.
Abstract: Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m× 20 m, 5 m× 5 m, and 1 m× 1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (& and μ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the α and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/α should be an alternative measure of diversity.
(Managing editor: Ya-Qin HAN)  相似文献   

11.

Background

Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails.

Objective and Methods

If our assumptions are true, the DPLN distribution should provide a better fit to random phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and Pareto. The best model was judged by the Akaike Information Criterion (AIC).

Results

Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions.

Conclusions and Significance

A DPLN distribution is consistent with the hypothesis that developmental stability is mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction networks. Alternatively, multiplicative cell growth, and the mixing of lognormal distributions having different variances, may generate a DPLN distribution.  相似文献   

12.
There are large differences in the frequencies of different kinds of neoplasms in a human or animal population. The question arises, whether the set of these frequencies shows some characteristic feature. Our fitting results on neoplasm frequency data relating to laboratory rats show that the frequencies are approximately lognormally distributed. At the same time, fitting results with the logarithmic series distribution, also frequently used in similar studies, are poor. A good fit of the Zipf-Mandelbrot distribution, fitted to the descendingly ordered dominant and subdominant frequencies can be achieved, sometimes after omitting some diagnoses. We point out the possibility that the omitted frequencies may be considered "unnatural" ones. The good fit of a particular frequency distribution to the diagnosis frequency set suggests a corresponding chance mechanism in forming the occurrence probabilities of different kinds of neoplasms. A frequently used scalar feature of frequency distributions of categorical data is the concentration or diversity. It was found that in the female rat population the diagnoses are more concentrated among the diagnosis categories. A possible explanation may involve the fact that females mature faster than males. The study of the distribution properties of the diagnosis frequencies promises the observation of new epidemiological phenomena.  相似文献   

13.
One aspect of community ecology that has been given particular attention is the pattern of species abundances in a community. The species may have a wide range of abundances; some are very common and others rare. When species abundance models are fitted to observations, the lognormal model and one of the gamma models (e.g., the log-series model) are usually applied. The model that gives the best fit according to some goodness-of-fit test is then chosen. By applying a diffusion approximation for each species' dynamics with density regulation of the straight theta-logistic type, we here present a general species abundance model that embraces the two most widely applied species abundance models, the lognormal and the gamma. Our general model will, therefore, provide a better fit than the two special cases, except when it corresponds to one of them. In contrast to the classical models, ours is also dynamic, making it possible to evaluate the fluctuations in species abundance over time through both biotic and abiotic factors. The model is fitted to several species abundance data sets and our results compared to previous attempts to fit a model, usually either the lognormal or the log-series.  相似文献   

14.
Summary The moment skewness coefficient, coefficient of variation and Gini coefficient are contrasted as statistical measures of inequality among members of plant populations. Constructed examples, real data examples, and distributional considerations are used to illustrate pertinent properties of these statistics to assess inequality. All three statistics possess some undesirable properties but these properties are shown to be often unimportant with real data. If the underlying distribution of the variable follows the often assumed two-parameter lognormal model, it is shown that all three statistics are likely to be highly and positively correlated. In contrast, for distributions which are not two-parameter lognormally distributed, and when the distribution is not concentrated near zero, the coefficient of variation and Gini coefficient, which are sensitive to small shifts in the mean, are often of little practical use in ordering the equality of populations. The coefficent of variation is more sensitive to individuals in the right-hand tail of a distribution than is the Gini coefficient. Therefore, the coefficient of variation may often be recommended over the Gini coefficient if a measure of relative precision is selected to assess inequality. The skewness coeficient is suggested when the distribution is either three-parameter lognormally distributed (or close to such), or when a measure of relative precision is not indicated.Scientific Paper no 7830. College of Agriculture and Home Economics Research Center, Washington State University  相似文献   

15.
A methodology is developed that determines age-specific transition rates between cell cycle phases during balanced growth by utilizing age-structured population balance equations. Age-distributed models are the simplest way to account for varied behavior of individual cells. However, this simplicity is offset by difficulties in making observations of age distributions, so age-distributed models are difficult to fit to experimental data. Herein, the proposed methodology is implemented to identify an age-structured model for human leukemia cells (Jurkat) based only on measurements of the total number density after the addition of bromodeoxyuridine partitions the total cell population into two subpopulations. Each of the subpopulations will temporarily undergo a period of unbalanced growth, which provides sufficient information to extract age-dependent transition rates, while the total cell population remains in balanced growth. The stipulation of initial balanced growth permits the derivation of age densities based on only age-dependent transition rates. In fitting the experimental data, a flexible transition rate representation, utilizing a series of cubic spline nodes, finds a bimodal G(0)/G(1) transition age probability distribution best fits the experimental data. This resolution may be unnecessary as convex combinations of more restricted transition rates derived from normalized Gaussian, lognormal, or skewed lognormal transition-age probability distributions corroborate the spline predictions, but require fewer parameters. The fit of data with a single log normal distribution is somewhat inferior suggesting the bimodal result as more likely. Regardless of the choice of basis functions, this methodology can identify age distributions, age-specific transition rates, and transition-age distributions during balanced growth conditions.  相似文献   

16.
The present study demonstrates the possibility of estimating species numbers of animal or plant communities from samples using relative abundance distributions. We use log‐abundance–species‐rank order plots and derive two new estimators that are based on log‐series and lognormal distributions. At small to moderate sample sizes these estimators appear to be more precise than previous parametric and nonparametric estimators. We test our estimators using samples from 171 published medium‐sized to large animal and plant communities taken from the literature. By this we show that our new estimators define also limits of precision.  相似文献   

17.
BackgroundMathematical models predict an exponential distribution of infection prevalence across communities where a disease is disappearing. Trachoma control programs offer an opportunity to test this hypothesis, as the World Health Organization has targeted trachoma for elimination as a public health concern by the year 2020. Local programs may benefit if a single survey could reveal whether infection was headed towards elimination. Using data from a previously-published 2009 survey, we test the hypothesis that Chlamydia trachomatis prevalence across 75 Tanzanian communities where trachoma had been documented to be disappearing is exponentially distributed.Methods/FindingsWe fit multiple continuous distributions to the Tanzanian data and found the exponential gave the best approximation. Model selection by Akaike Information Criteria (AICc) suggested the exponential distribution had the most parsimonious fit to the data. Those distributions which do not include the exponential as a special or limiting case had much lower likelihoods of fitting the observed data. 95% confidence intervals for shape parameter estimates of those distributions which do include the exponential as a special or limiting case were consistent with the exponential. Lastly, goodness-of-fit testing was unable to reject the hypothesis that the prevalence data came from an exponential distribution.ConclusionsModels correctly predict that infection prevalence across communities where a disease is disappearing is best described by an exponential distribution. In Tanzanian communities where local control efforts had reduced the clinical signs of trachoma by 80% over 10 years, an exponential distribution gave the best fit to prevalence data. An exponential distribution has a relatively heavy tail, thus occasional high-prevalence communities are to be expected even when infection is disappearing. A single cross-sectional survey may be able to reveal whether elimination efforts are on-track.  相似文献   

18.
Perceptual multistability, alternative perceptions of an unchanging stimulus, gives important clues to neural dynamics. The present study examined 56 perceptual dominance time series for a Necker cube stimulus, for ambiguous motion, and for binocular rivalry. We made histograms of the perceptual dominance times, based on from 307 to 2478 responses per time series (median=612), and compared these histograms to gamma, lognormal and Weibull fitted distributions using the Kolmogorov–Smirnov goodness-of-fit test. In 40 of the 56 tested cases a lognormal distribution provided an acceptable fit to the histogram (in 24 cases it was the only fit). In 16 cases a gamma distribution, and in 11 cases a Weibull distribution, were acceptable but never as the only fit in either case. Any of the three distributions were acceptable in three cases and none provided acceptable fits in 12 cases. Considering only the 16 cases in which a lognormal distribution was rejected (p<0.05) revealed that minor adjustments to the fourth-moment term of the lognormal characteristic function restored good fits. These findings suggest that random fractal theory might provide insight into the underlying mechanisms of multistable perceptions.  相似文献   

19.
For epidemic models, it is shown that fatal infectious diseases cannot drive the host population into extinction if the incidence function is upper density-dependent. This finding holds even if a latency period is included and the time from infection to disease-induced death has an arbitrary length distribution. However, if the incidence function is also lower density-dependent, very infectious diseases can lead to a drastic decline of the host population. Further, the final population size after an epidemic outbreak can possibly be substantially affected by the infection-age distribution of the initial infectives if the life expectations of infected individuals are an unbounded function of infection age (time since infection). This is the case for lognormal distributions, which fit data from infection experiments involving tiger salamander larvae and ranavirus better than gamma distributions and Weibull distributions.  相似文献   

20.
Monte Carlo risk assessments commonly take as input empirical or parametric exposure distributions from specially designed exposure studies. The exposure studies typically have limited duration, since their design is based on statistical and practical factors (such as cost and respondent burden). For these reasons, the exposure period studied rarely corresponds to the biologic exposure period, which we define as the time at risk that is relevant for quantifying exposure that may result in health effects. Both the exposure period studied and the biologic exposure period will often differ from the exposure interval used in a Monte Carlo analysis. Such time period differences, which are often not accounted for, can have dramatic effects on the ultimate risk assessment. When exposure distributions are right skewed and/or follow a lognormal distribution, exposure will usually be overestimated for percentiles above the median by direct use of exposure study empirical data, since biologic exposure periods are generally longer than the exposure periods in exposure assessment studies. We illustrate the effect that biologic exposure time period and response error can have on exposure distributions, using soil ingestion as an example. Beginning with variance components from lognormally distributed soil ingestion estimates, we illustrate the effect of different modeling assumptions, and the sensitivity of the resulting analyses to these assumptions. We develop a strategy for determining appropriate exposure input distributions for soil ingestion, and illustrate this using data on soil ingestion in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号