首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The techniques of restriction fragment length polymorphism analysis and examination of gene copy number in duplication-bearing Dictyostelium discoideum strains have been used to map four actin genes of the wild-type strain NC4 to specific linkage groups. In part, this was accomplished by identification of restriction fragments corresponding to particular cloned actin genes using gene-specific probes from unique sequence 5' and 3' untranslated regions. Cloned gene Actin 8 (designation act-8) maps to linkage group I; Actins 12 (act-12) and M6 (actM6) to linkage group II. An uncloned gene (act-100) also maps to linkage group II in the same region as actM6, as defined by a chromosomal duplication. From analysis of other wild isolates of D. discoideum, it was determined that in these isolates at least two actin genes map to linkage group I and at least four map to linkage group II. These results demonstrate the utility of molecular techniques in genetic analysis of Dictyostelium, particularly for developmentally regulated genes that have been cloned but that have no identified mutant phenotypes.  相似文献   

4.
We describe a general strategy for the genetic mapping in parallel of multiple restriction fragment length polymorphism (RFLP) loci. This approach allows the systematic identification for cloning of physical genetic loci within about 100 kb of any gene in Caenorhabditis elegans. We have used this strategy of parallel RFLP mapping to clone the heterochronic gene lin-14, which controls the timing and sequence of many C. elegans postembryonic developmental events. We found that of about 400 polymorphic loci in the C. elegans genome associated with the Tc1 family of repetitive elements, six are within 0.3 map unit of lin-14. The three closest lin-14-linked Tc1-containing restriction fragments were cloned and used to identify by hybridization an 830-kb region of contiguous cloned DNA fragments assembled from cosmid and yeast artificial chromosome libraries. A lin-14 intragenic recombinant that separated a previously cryptic lin-14 semidominant mutation from a cis-acting lin-14 suppressor mutation was used to map the location of the lin-14 gene to a 25-kb region of this 830-kb contig. DNA probes from this region detected lin-14 allele-specific DNA alterations and a lin-14 mRNA. Two lin-14 semi-dominant alleles, which cause temporally inappropriate lin-14 gene activity and lead to the reiterated expression of specific early developmental events, were shown to delete sequences from the lin-14 gene and mRNA. These deletions may define cis-acting sequences responsible for the temporal regulation of lin-14.  相似文献   

5.
6.
7.
A gene required for growth and viability in recA mutants of Escherichia coli K-12 was identified. This gene, rdgB (for Rec-dependent growth), mapped near 64 min on the E. coli genetic map. In a strain carrying a temperature-sensitive recA allele, recA200, and an rdgB mutation, DNA synthesis but not protein synthesis ceased after 80 min of incubation at 42 degrees C, and there was extensive DNA degradation. The rdgB mutation alone had no apparent effect on DNA synthesis or growth; however, mutant strains did show enhanced intrachromosomal recombination and induction of the SOS regulon. The rdgB gene was cloned and its-gene product identified through the construction and analysis of deletion and insertion mutations of rdgB-containing plasmids. The ability of a plasmid to complement an rdgB recA mutant was correlated with its ability to produce a 25-kilodalton polypeptide as detected by the maxicell technique.  相似文献   

8.
Yeast strain deleted for the YFH1 gene, which encodes the orthologue of human frataxin, accumulates iron in mitochondria, constitutively activates the high-affinity iron import system in the plasma membrane, and is sensitive to high iron media. We have performed a genetic screen for mutants of a yfh1 deleted strain with increased resistance to high levels of iron. One of the identified mutations caused the deletion of the hypervariable C-terminal region of Ras2p GTPase. The effect of ras2 mutation on the growth of yfh1 null strain was masked by the addition of caffeine. We found that the ras2 mutation does not alter the expression of the iron regulon nor prevent mitochondrial iron accumulation in a yfh1 mutant context. The double yfh1 ras2 mutant has increased mRNA levels of CIT2 gene and augmented catalase activity.  相似文献   

9.
Two mutants of bacteriophage T5 deficient in the ability to induce wild-type levels of deoxynucleoside monophosphate kinase were isolated and partially characterized. Both mutations were demonstrated to be in a structural gene for the kinase. One of the mutants, designated dnk 10, induces no detectable levels of dCMP, dGMP, or dTMP kinase activity. Because the mutant can successfully infect nonpermissive cells, phage-induced deoxynucleoside monophosphate kinase appears to be an unessential function for phage production. DNA synthesis in dnk 10-infected cells, however, is reduced to 30% of that observed in wild-type-infected cells; phage production is reduced by a comparable amount. The dnk mutation has been mapped and located on the "C" region of the T5 genetic map, 6.3 map units from the C1 locus.  相似文献   

10.
目的 对黑线仓鼠及其白化突变系酪氨酸酶基因进行比较研究,揭示黑线仓鼠白化突变系白化性状产生的分子机理.方法 根据小鼠与大鼠的酪氨酸酶基因保守区设计3对引物,利用RT-PCR方法,从黑线仓鼠及其白化系皮肤总RNA中扩增得到酪氨酸酶的cDNA基因,并对其二者进行克隆测序.结果 成功获得了黑线仓鼠及其白化突变系的酪氨酸酶基因,对二者的序列比较分析结果表明,二者的编码区没有差异.结论 黑线仓鼠白化突变系白化性状产生的原因与已知小鼠的白化性状产生原因不同,并不是由酪氨酸酶基因编码区突变造成的,其白化性状产生的机理有待进一步的研究.  相似文献   

11.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

12.
We report here a study of the developmental and genetic control of tissue-specific expression of lipoprotein lipase, the enzyme responsible for hydrolysis of triglycerides in chylomicrons and very low density lipoproteins. Lipoprotein lipase (LPL) mRNA is present in a wide variety of adult rat and mouse tissues examined, albeit at very different levels. A remarkable increase in the levels of LPL mRNA occurs in heart over a period of several weeks following birth, closely paralleling developmental changes in lipase activity and myocardial beta-oxidation capacity. Large increases in LPL mRNA also occur during differentiation of 3T3L1 cells to adipocytes. As previously reported, at least two separate genetic loci control the tissue-specific expression of LPL activity in mice. One of the loci, controlling LPL activity in heart, is associated with an alteration in LPL mRNA size, while the other, controlling LPL activity in adipose tissue, appears to affect the translation or post-translational expression of LPL. To examine whether these genetic variations are due to mutations of the LPL structural locus, we mapped the LPL gene to a region of mouse chromosome 8 using restriction fragment-length polymorphisms and analysis of hamster-mouse somatic cell hybrids. This region is homologous to the region of human chromosome 8 which contains the human LPL gene as judged by the conservation of linked genetic markers. Genetic variations affecting LPL expression in heart cosegregated with the LPL gene, while variations affecting LPL expression in adipose tissue did not. Furthermore, Southern blotting analysis indicates that LPL is encoded by a single gene and, thus, the genetic differences are not a consequence of independent regulation of two separate genes in the two tissues. These results suggest the existence of cis-acting elements for LPL gene expression that operate in heart but not adipose tissue. Our results also indicate that two genetic mutations resulting in deficiencies of LPL in mice, the W mutation on chromosome 5 and the cld mutation on mouse chromosome 17, do not involve the LPL structural gene locus. Finally, we show that the gene for hepatic lipase, a member of a gene family with LPL, is unlinked to the gene for LPL. This indicates that combined deficiencies of LPL and hepatic lipase, observed in humans as well as in certain mutant strains of mice, do not result from focal disruptions of a cluster of lipase genes.  相似文献   

13.
E Paucha  A E Smith 《Cell》1978,15(3):1011-1020
To demonstrate directly that the carboxy terminal portion of simian virus 40 (SV40) small t is encoded by a sequence of nucleotides from the region between 0.59-0.54 map units on SV40 DNA, we characterized the putative shortened forms or fragments of small t produced by mutants of SV40 (dl 884, dl 885, dl 890) with deletions in this region of the genome. Attempts to isolate the putative fragments of small t from mutant-infected cells, or from cell-free systems primed with mRNA from mutant-infected cells, resulted in only low yields of the fragments. Experiments using purified SV40 mRNA in low background cell-free systems, in which large T and small t could be detected without immunoprecipitation, suggested that these low yields were accounted for by reduced amounts of mRNA coding for the shortened forms of small t present in the mutant-infected cells. Larger amounts of putative fragments of small t were produced by translation of deletion mutant cRNA (complementary RNA synthesized in vitro using purified deletion mutant DNA and E. coli RNA polymerase). Fingerprint analysis of the proteins produced showed that they contain most, if not all, of the methionine peptides common to small t and large T. Furthermore, the fragments of small t produced in response to dl 884 and dl 890 lack two methionine peptides that are present in small t but not in large T. These data provide direct evidence that the region between 0.59-0.54 map units on SV40 DNA codes for polypeptide sequences that are unique to small t, and establishes that the nucleotide sequences from the region between 0.59-0.54 map units are both a coding sequence (for small t) and an intervening sequence (for large T).  相似文献   

14.
A spontaneous null mutation at the alpha-amylase locus in Drosophila melanogaster was recovered from a laboratory population. The mutant strain was found to lack amylase enzyme production and to produce low, but detectable, levels of amylase mRNA. Moreover, the null strain is also lacking the glucose repression of amylase mRNA production which is seen in wild-type strains. The mutant phenotype correlates with a rearrangement in genomic DNA which, in turn, corresponds to a simple inversion in the arrangement observed most frequently in North American populations of D. melanogaster, including the common laboratory strain, Oregon-R. These results have implications for our understanding of both the evolution of the duplicated amylase gene structure and the regulation of amylase gene expression.  相似文献   

15.
A method was devised for identifying nonlethal mutants of T4 bacteriophage which lack the capacity to induce degradation of the deoxyribonucleic acid (DNA) of their host, Escherichia coli. If a culture is infected in a medium containing hydroxyurea (HU), a compound that blocks de novo deoxyribonucleotide biosynthesis by interacting with ribonucleotide reductase, mutant phage that cannot establish the alternate pathway of deoxyribonucleotide production from bacterial DNA will fail to produce progeny. The progeny of 100 phages that survived heavy mutagenesis with hydroxylamine were tested for their ability to multiply in the presence of HU. Four of the cultures lacked this capacity. Cells infected with one of these mutants, designated T4nd28, accumulated double-stranded fragments of host DNA with a molecular weight of approximately 2 x 10(8) daltons. This mutant failed to induce T4 endonuclease II, an enzyme known to produce single-strand breaks in double-stranded cytosine-containing DNA. The properties of nd28 give strong support to an earlier suggestion that T4 endonuclease II participates in host DNA degradation. The nd28 mutation mapped between T4 genes 32 and 63 and was very close to the latter gene. It is, thus, in the region of the T4 map that is occupied by genes for a number of other enzymes, including deoxycytidylate deaminase, thymidylate synthetase, dihydrofolate reductase, and ribonucleotide reductase, that are nonessential to phage production in rich media.  相似文献   

16.
A Kasravi  M F Walter  S Brand  J M Mason  H Biessmann 《Genetics》1999,152(3):1025-1035
We present here the molecular cloning and characterization of the mutator2 (mu2) gene of Drosophila melanogaster together with further genetic analyses of its mutant phenotype. mu2 functions in oogenesis during meiotic recombination, during repair of radiation damage in mature oocytes, and in proliferating somatic cells, where mu2 mutations cause an increase in somatic recombination. Our data show that mu2 represents a novel component in the processing of double strand breaks (DSBs) in female meiosis. mu2 does not code for a DNA repair enzyme because mu2 mutants are not hypersensitive to DSB-inducing agents. We have mapped and cloned the mu2 gene and rescued the mu2 phenotype by germ-line transformation with genomic DNA fragments containing the mu2 gene. Sequencing its cDNA demonstrates that mu2 encodes a novel 139-kD protein, which is highly basic in the carboxy half and carries three nuclear localization signals and a helix-loop-helix domain. Consistent with the sex-specific mutant phenotype, the gene is expressed in ovaries but not in testes. During oogenesis its RNA is rapidly transported from the nurse cells into the oocyte where it accumulates specifically at the anterior margin. Expression is also prominent in diploid proliferating cells of larval somatic tissues. Our genetic and molecular data are consistent with the model that mu2 encodes a structural component of the oocyte nucleus. The MU2 protein may be involved in controlling chromatin structure and thus may influence the processing of DNA DSBs.  相似文献   

17.
Molecular Mapping of the ROSY Locus in DROSOPHILA MELANOGASTER   总被引:30,自引:20,他引:10       下载免费PDF全文
The DNA from the chromosomal region of the Drosophila rosy locus has been examined in 83 rosy mutant strains. Several spontaneous and radiation-induced alleles were associated with insertions and deletions, respectively. The lesions are clustered in a 4-kb region. Some of the alleles identified on the DNA map have been located on the genetic map by fine-structure recombination experiments. The genetic and molecular maps are collinear, and the alignment identifies the DNA location of the rosy control region. A rosy RNA of 4.5 kb has been identified; its 5' end lies in or near the control region.  相似文献   

18.
Recombination-deficient strains have been proven useful for the understanding of the genetic control of homologous recombination. As the genetic screens used to isolate recombination-deficient (rec(-)) yeast mutants have not been saturated, we sought to develop a simple colony color assay to identify mutants with low or elevated rates of recombination. Using this system we isolated a collection of rec(-) mutants. We report the characterization of the REC41 gene identified in this way. REC41 is required for normal levels of interplasmid recombination and gamma-ray induced mitotic interchromosomal recombination. The rec41-1 mutant failed to grow at 37 degrees C. Microscopic analysis of plated cells showed that 45-50% of them did not form visible colonies at permissive temperature. Haploid cells of the rec41 mutant show the same gamma-ray sensitivity as wild type ones. However, the diploid rec41 mutant shows gamma-ray sensitivity which is comparable with heterozygous REC41/rec41-1 diploid cells. This fact indicates semidominance of the rec41-1 mutation. Diploid strains homozygous for the rec41 rad52 mutations had the same gamma-ray sensitivity as single rad52 diploids and exhibited dramatically decreased growth rate. The expression of the HO gene does not lead to inviability of rec41 cells. The rec41 mutation has an effect on meiosis, likely meiotic recombination, even in the heterozygous state. We cloned the REC41 gene. Sequence analysis revealed that the REC41 gene is encoded by ORF YDR245w. Earlier, this ORF was attributed to MNN10, BED1, SLC2, CAX5 genes. Two multicopy plasmids with suppressers of the rec41-1 mutation (pm21 and pm32) were isolated. The deletion analysis showed that only DNA fragments with the CDC43 and HAC1 genes can partially complement the rec41-1 mutation.  相似文献   

19.
Abstract. Roots of the non-nodulating Medicago sativa mutant MN-1008 neither undergo root-hair curling, cortical cell division nor any of the early molecular events that accompany nodule initiation and development following rhizobial infection or treatment with Nod factor. These observations suggested that the mutation(s) impaired a pivotal function in Nod factor perception or in the signal transduction pathway. In this paper we show that the genetic lesion conditioning the recessive non-nodulation phenotype in the tetraploid alfalfa mutant MN-1008 can be localized to a single region on LG5 of the M. sativa genetic map. This conclusion is based on genetic analyses conducted at the tetraploid level, involving both segregation analysis and genetic mapping of the trait with respect to molecular DNA markers. The genetic mapping of the Nod(-) phenotype was performed in a segregating tetraploid F2 population, taking advantage of the availability of an advanced genetic map for diploid alfalfa. Two tightly linked flanking markers have been identified which will facilitate the physical mapping and cloning of the gene(s) that underlie(s) the non-nodulation phenotype.  相似文献   

20.
Cell-free translation of pseudorabies virus RNA isolated during the late phase of the infectious cycle yielded a variety of polypeptides. A monoclonal antibody directed against one of the major viral glycoproteins, gA, immunoprecipitated two polypeptides ranging in molecular weight from 78K to 83K. To localize the structural gene for gA, we used cloned BamHI fragments of the viral DNA to select specific mRNA species and immunoprecipitated their in vitro translation products with the anti-gA monoclonal antibody. This allowed us to map the genomic region encoding the mRNA for the gA within the short unique region of the viral genome on BamHI fragments 7 and 12. Additional polypeptides encoded by this region were characterized by their electrophoretic mobility. In three virus strains tested a similar, but strain-specific, pattern of the two gA precursors was found which was not dependent on the host cell or the state of infection after reaching the late phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号