首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of a redox cycler and arylator (menadione) and a pure arylator quinone (benzoquinone) was studied on different NADPH generating and consuming processes in isolated mouse hepatocytes. 2. Menadione inhibited gluconeogenesis from alanine but not from fructose or glycerol. 3. Drug oxidation measured as aniline hydroxylation and aminopyrine N-demethylation could be inhibited by menadione in microsomal membrane and in isolated hepatocytes both from fed or fasted animals. 4. Ureogenesis in isolated hepatocytes from fed mice could not be inhibited even by high concentration of menadione, while in cells from fasted animals menadione was inhibitory at high concentration in the presence of gluconeogenic precursor and at lower concentration in the absence of it. 5. Benzoquinone did not inhibit the above mentioned processes.  相似文献   

2.
Infusion of menadione at two different doses [2.7 mg and 5.5 mg in 100 microliters of dimethyl sulphoxide (DMSO)] into perfused rat livers for 30 min caused no or a 6-fold increase respectively in junctional permeability to horseradish peroxidase as compared with controls receiving 100 microliters of DMSO alone. The total glutathione (GSH) contents in these livers measured at the end of the experiments were 115% and 53%, compared with the controls. The free-radical scavenger butylated hydroxytoluene (BHT) (final concn. 5 microM) protected against the GSH depletion caused by the higher dose of menadione and partially decreased the menadione-induced increase in junctional permeability. Verapamil, a Ca2(+)-channel blocker which was added into the perfusion medium (final concn. 40 microM) 10 min before the infusion of 5.5 mg of menadione, completely abolished the effect of menadione on junctional permeability. Menadione exposure therefore increases tight-junctional permeability in the liver; this may involve a depletion of GSH and a subsequent increase in intracellular Ca2+.  相似文献   

3.
Nitrofurantoin is a widely utilized urinary antimicrobial drug which has been associated with pulmonary fibrosis, neuropathy, and hepatitis as well as hemolytic anemia in glucose-6-phosphate dehydrogenase-deficient individuals. Incubation of freshly isolated rat hepatocytes with nitrofurantoin caused oxygen activation as a result of futile redox cycling. Glutathione disulfide (GSSG) was formed and rapidly exported from the cell resulting in complete glutathione (GSH) depletion followed by cell death. However, fructose prevented the export of GSSG from the cell and GSH levels recovered rapidly without cytotoxicity occurring. Fructose did not affect nitrofurantoin metabolism but rapidly depleted cellular ATP levels by approximately 80% which remained depressed during the incubation period. Fructose, however, did not protect hepatocytes from nitrofurantoin-induced cytotoxicity if GSH was depleted beforehand. Protection by fructose only occurred at concentrations which caused ATP depletion. These results suggest that fructose prevents nitrofurantoin-induced toxicity by depleting ATP and thereby preventing the ATP-dependent GSSG efflux. GSSG is retained enabling NADPH and glutathione-reductase to reduce the GSSG back to GSH, thereby protecting the cell from nitrofurantoin-induced oxidative stress.  相似文献   

4.
The effect of rifamycin SV on metabolic performance and cell viability was studied using isolated hepatocytes from fed, starved and glutathione (GSH) depleted rats. The relationships between GSH depletion, nutritional status of the cells, glucose metabolism, lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) production in the presence of rifamycin SV and transition metal ions was investigated. Glucose metabolism was impaired in isolated hepatocytes from both fed and starved animals, the effect is dependent on the rifamycin SV concentration and is enhanced by copper (II). Oxygen consumption by isolated hepatocytes from starved rats was also increased by copper (II) and a partial inhibition due to catalase was observed. Cellular GSH levels which decrease with increasing the rifamycin SV concentration were almost depleted in the presence of copper (II). A correlation between GSH depletion and LDH leakage was observed in fed and starved cells. Catalase induced a slight inhibition of the impairment of gluconeogenesis, GSH depletion and LDH leakage in starved hepatocytes incubated with rifamycin SV, iron (II) and copper (II) salts. Lipid peroxidation measured as MDA production by isolated hepatocytes was also augmented by rifamycin SV and copper (II), especially in hepatic cells isolated from starved and GSH depleted rats. Higher cytotoxicity was observed in isolated hepatocytes from fasted animals when compared with fed or GSH depleted animals. It seems likely that in addition to GSH level, there are other factors which may have an influence on the susceptibility of hepatic cells towards xenobiotic induced cytotoxicity.  相似文献   

5.
The effect of N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen, on the energy metabolism in isolated hepatocytes was investigated. Incubation of cells with NAPQI (400 microM) resulted in an immediate uptake into the mitochondria, followed by both reduction and glutathione conjugation of the quinone imine. These reactions were extremely rapid and were associated with depletion of the mitochondrial ATP content (greater than 80% depletion after 1 min exposure). The loss of ATP was accompanied by increases in ADP and AMP, as well as NADP. No effect on mitochondrial NAD was observed during this initial phase. Similar alterations were produced by NAPQI in the cytosolic compartment. Furthermore, incubation of hepatocytes with NAPQI inhibited oxygen consumption by nearly 90% within 10 s. In parallel to these biochemical changes, there was marked bleb formation on the surface of the hepatocytes, which was found to precede cell death (trypan blue uptake). In conclusion, our results demonstrate that during exposure of hepatocytes to NAPQI, dramatic changes in cellular energy metabolism occur. These biochemical alterations may be caused by a rapid decrease in mitochondrial function, and they may play an important role in the initiation of NAPQI-induced cytotoxicity.  相似文献   

6.
AimsMenadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs).Main methodsBAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody.Key findingsIntracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells.SignificanceWe conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate.  相似文献   

7.
Menadione is known to decrease the mixed function oxidase mediated metabolism of a number of substrates in microsomal systems. The present study examines the effect of menadione on benzo(a)pyrene metabolism in whole cells, microsomes and a semi-purified reconstituted mixed function oxidase system. Menadione has a high affinity for the NADPH dependent cytochrome P-450 reductase and acts as a competitive inhibitor of cytochrome P-450 reductase in the metabolism of benzo(a)pyrene. This is the mechanism of inhibition of aryl hydrocarbon hydroxylase by menadione in reconstituted systems. In a whole cell system and at low concentrations of menadione, depletion of reduced pyridine nucleotides is the initial inhibitory event.  相似文献   

8.
1. Treatment with N,N-bis (2-chloroethyl)-N-nitrosourea (BCNU) (80 microM) led to decreases in cell viability in both naive and sodium phenobarbital (PB) induced hepatocytes. 2. Dicumarol (30 microM) selectively increased the cytotoxicity of menadione in hepatocytes isolated from naive vs PB-pretreated rats. 3. Inclusion of both BCNU and dicumarol to the incubation medium abolished the characteristic concentration-response curves of the hepatocytes for menadione. 4. A greater proportion of menadione was metabolized by DT-diaphorase in the hepatocytes isolated from PB-pretreated rats. 5. The role of glutathione reductase vs DT-diaphorase in mitigating menadione-cytotoxicity in the naive vs PB-induced hepatocyte is discussed.  相似文献   

9.
Formation of excited species such as singlet molecular oxygen during redox cycling (one-electron reduction-oxidation) was detected by low-level chemiluminescence emitted from perfused rat liver and isolated hepatocytes supplemented with the quinone, menadione (vitamin K3). Chemiluminescence was augmented when the two-electron reduction of the quinone catalyzed by NAD(P)H:quinone reductase was inhibited by dicoumarol, thus underlining the protective function of this enzyme also known as DT-diaphorase. Interference with NADPH supply by inhibition of energy-linked transhydrogenase by rhein or of mitochondrial electron transfer by antimycin A led to a depression in the level of photoemission. Unexpectedly, glutathione depletion of the liver led to a lowering of chemiluminescence elicited by menadione, whereas conversely the depletion of glutathione led to increased chemiluminescence levels when a hydroperoxide was added instead of the quinone. As the GSH conjugate of menadione, 2-methyl-3-glutathionyl-1,4-naphthoquinone, studied with microsomes, was shown also to be capable of redox cycling, we conclude that menadione-induced chemiluminescence of the perfused rat liver does not only arise from menadione itself but from the menadione-GSH conjugate as well. Therefore, the conjugation of the quinone with glutathione is not in itself of protective nature and does not abolish semiquinone formation. A biologically useful aspect of conjugate formation resides in the facilitation of biliary elimination from the liver. Nonenzymatic formation of the conjugate from menadione and GSH in vitro was found to be accompanied by the formation of aggressive oxygen species.  相似文献   

10.
Quinones are believed to be toxic by a mechanism involving redox cycling and oxidative stress. In this study, we have used 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ), which redox cycles to the same degree as menadione, but does not react with free thiol groups, to distinguish between the importance of redox cycling and arylation of free thiol groups in the causation of toxicity to isolated hepatocytes. Menadione was significantly more toxic to isolated hepatocytes than 2,3-diOMe-1,4-NQ. Both menadione and 2,3-diOMe-1,4-NQ caused an extensive GSH depletion accompanied by GSSG formation, preceding loss of viability. Both compounds stimulated a similar increase in oxygen uptake in isolated hepatocytes and NADPH oxidation in microsomes suggesting they both redox cycle to similar extents. Further evidence for the redox cycling in intact hepatocytes was the detection of the semiquinone anion radicals with electron spin resonance spectroscopy. In addition we have, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), demonstrated for the first time the formation of superoxide anion radicals by intact hepatocytes. These radicals result from oxidation of the semiquinone by oxygen and further prove that both these quinones redox cycle in intact hepatocytes. We conclude that while oxidative processes may cause toxicity, the arylation of intracellular thiols or nucleophiles also contributes significantly to the cytotoxicity of compounds such as menadione.  相似文献   

11.
Oxidative stress studied in intact mammalian cells   总被引:1,自引:0,他引:1  
Exposure of isolated rat hepatocytes to toxic doses of menadione (2-methyl-1,4-naphthoquinone) results in enhanced formation of active oxygen species, depletion of cellular glutathione and protein thiols, and perturbation of intracellular calcium ion homeostasis. An increase in cytosolic Ca2+ concentration, resulting from inhibition of the plasma membrane Ca2+ translocase by menadione metabolism, appears to be critically involved in the development of cytotoxicity.  相似文献   

12.
The effect of NaF on cAMP production was studied in hepatocytes isolated from fed and fasted rats. A four-six fold increase in hepatocyte cAMP production was observed in the presence of 10-20 mM NaF in cells isolated from either fed or fasted rats. The maximal stimulation of cAMP production was observed after a 10 min incubation in the presence of 1 mM theophylline. However, as little as 0.05-0.15 mM NaF induced a significant increase in cAMP production. It was also found that NaF would alter the production of glucose in isolated rat hepatocytes. When hepatocytes from fed rats were incubated with 0.05-5 mM NaF there was an increase in amount of glucose released from endogenous sources. Also NaF resulted in a decrease in lactate and pyruvate production. Similarly NaF stimulated glucose production in hepatocytes from fasted rats. The maximal stimulation was observed with about 0.15-0.25 mM NaF. At NaF concentrations greater than 1.5 mM a decrease in glucose production was observed. It is concluded that NaF increases the level of cAMP and alters glucose metabolism in intact hepatocytes.  相似文献   

13.
Intracellular Na+ accumulation has been shown to contribute to hepatocyte death caused by anoxia or oxidative stress. In this study we have investigated the mechanism by which Na+ overload can contribute to the development of cytotoxicity. ATP depletion in isolated hepatocytes exposed to menadione-induced oxidative stress or to KCN was followed by Na+ accumulation, loss of intracellular K+, and cell swelling. Hepatocyte swelling occurred in two phases: a small amplitude swelling (about 15% of the initial size) with preservation of plasma membrane integrity and a terminal large amplitude swelling associated with cell death. Inhibition of Na+ accumulation by the use of a Na+-free medium prevented K+ loss, cell swelling, and cytotoxicity. Conversely, blocking K+ efflux by the addition of BaCl2 did not influence Na+ increase and small amplitude swelling, but greatly stimulated large amplitude swelling and cytotoxicity. Menadione or KCN killing of hepatocytes was also enhanced by inducing cell swelling in an hypotonic medium. However, increasing the osmolarity of the incubation medium did not protect against large amplitude swelling and cytotoxicity, since stimulated Na+ accumulation and K+ efflux. Altogether these results indicate that the impairment of volume regulation in response to the osmotic load caused by Na+ accumulation is critical for the development of cell necrosis induced by mitochondrial inhibition or oxidative stress.  相似文献   

14.
Endothelial cells are exposed to potentially damaging reactive oxygen species generated both within the cells and in the bloodstream and underlying vessel wall. In this work, we studied the ability of ascorbic acid to protect cultured human-derived endothelial cells (EA.hy926) from oxidant stress generated by the redox cycling agent menadione. Menadione caused intracellular oxidation of dihydrofluorescein, which required the presence of D-glucose in the incubation medium, and was inhibited by intracellular ascorbate and desferrioxamine. At concentrations of 100 microM and higher, menadione depleted the cells of both GSH and ascorbate, and ascorbate loading partially prevented the decrease in GSH due to menadione. Menadione increased L-arginine uptake by the cells, but inhibited endothelial nitric oxide synthase, an effect that was prevented by acute loading with ascorbate. Ascorbate blunts menadione-induced oxidant stress in EA.hy926 cells, which may help to preserve nitric oxide synthase activity under conditions of excessive oxidant stress.  相似文献   

15.
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them.  相似文献   

16.
In order to clarify the role of oxidative processes in cytotoxicity we have studied the metabolism and toxicity of 2-methyl-1,4-naphthoquinone (menadione) and its 2,3 dimethyl (DMNQ) and 2,3 diethyl (DENQ) analogs in isolated rat hepatocytes. The two analogs, unlike menadione, cannot alkylate nucleophiles directly and were considerably less toxic than menadione. This decreased toxicity was consistent with the inability of DMNQ and DENQ to alkylate but we also found them to undergo lower rates of redox cycling in hepatocytes and a higher ratio of two electron as opposed to one electron reduction relative to menadione. Thus, facile analysis of the respective roles of alkylation and oxidation in cytotoxicity was not possible using these compounds. In hepatocytes pretreated with bischloroethyl-nitrosourea (BCNU) to inhibit glutathione reductase, all three naphthoquinones caused a potentiation of reduced glutathione (GSH) removal/oxidized glutathione (GSSG) generation and cytotoxicity relative to that observed in control cells. These data show that inhibition of hepatocyte glutathione reductase by BCNU results in enhanced naphthoquinone-induced oxidative challenge and subsequent cellular toxicity. That DMNQ and DENQ are cytotoxic, albeit at high concentrations, and that this cytotoxicity is potentiated by BCNU pretreatment suggest that oxidative processes alone can be a determinant of cytotoxicity.  相似文献   

17.
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-XL protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them.  相似文献   

18.
A Lavoinne 《Biochimie》1983,65(1):71-75
1. The digitonin fractionation procedure [Zuurendonk, P. F. and Tager, J. M. (1974) Biochim. Biophys. Acta, 333, 393-399] was used to determine the repartition of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fed and fasted rats. 2. This repartition is not significantly modified in the presence of pyruvate or alanine or lactate + pyruvate for isolated hepatocytes from fasted rats. 3. In isolated hepatocytes from fasted rats, the mitochondrial ATP/ADP X PO4 ratio is two-fold lower than in isolated hepatocytes from fed rats. 4. The cytosolic ATP/ADP X PO4 ratio depends on the nutritional state and (or) on the added substrate for neoglucogenesis.  相似文献   

19.
We report here our studies on troglitazone and rosiglitazone cytotoxicity in human hepatocytes isolated from multiple donors to investigate factors responsible for individual differences in sensitivity to the known hepatotoxicity of these antidiabetic drugs. Using cellular adenosine triphosphate (ATP) content as an endpoint, cytotoxicity of both drugs was evaluated in cryopreserved human hepatocytes from 37 donors. We confirmed reports of others that troglitazone was cytotoxic to human hepatocytes using cellular ATP content as an endpoint. In addition, we found that rosiglitazone, although less toxic in the study population, was cytotoxic to hepatocytes in some donors (EC(50)<100 microM). ATP content, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) metabolism, depletion of intracellular glutathione, Alamar Blue metabolism, and neutral red uptake were used as endpoints in a single donor study using freshly isolated human hepatocytes. Troglitazone appeared to be more toxic than rosiglitazone by all endpoints. From the demographic data provided to us for each donor, we were able to establish no direct correlation between cytotoxicity (expressed as EC(50) values) and age, sex, smoking status, or alcohol consumption. We conclude that troglitazone and rosiglitazone are differentially toxic to human hepatocytes, and that toxicity may be independent of age, sex, tobacco use, and alcohol use.  相似文献   

20.
The effects of menadione (2-methyl-1,4-naphthoquinone) metabolism on intracellular soluble and protein-bound thiols were investigated in freshly isolated rat hepatocytes. Menadione was found to cause a dose-dependent decrease in intracellular glutathione (GSH) level by three different mechanisms: (a) Oxidation of GSH to glutathione disulfide (GSSG) accounted for 75% of the total GSH loss; (b) About 15% of the cellular GSH reacted directly with menadione to produce a GSH-menadione conjugate which, once formed, was excreted by the cells into the medium; (c) A small amount of GSH (approximately 10%) was recovered by reductive treatment of cell protein with NaBH4, indicating that GSH-protein mixed disulfides were also formed as a result of menadione metabolism. Incubation of hepatocytes with high concentrations of menadione (greater than 200 microM) also induced a marked decrease in protein sulfhydryl groups; this was due to arylation as well as oxidation. Binding of menadione represented, however, a relatively small fraction of the total loss of cellular sulfhydryl groups, since it was possible to recover about 80% of the protein thiols by reductive treatments which did not affect protein binding. This suggests that the loss of protein sulfhydryl groups, like that of GSH, was mainly a result of oxidative processes occurring within the cell during the metabolism of menadione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号