首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the electrophysiological effects of cardiac hypertrophy induced by different experimental models. Comparison of the action potentials of hypertrophied and control rat hearts reveals a pronounced prolongation of the action potential for all types of hypertrophy. This prolongation affects the entire repolarization phase of the action potential 8 days after severe aortic constriction, after 8 days of isoproterenol treatment (5 mg/kg per day), and 3 months after an aortocaval fistula. The electrical changes associated with myocardial hypertrophy induced by pressure overload (aortic constriction) were compared with those resulting from volume overload (aortocaval fistula). Our results show that action potential alterations depend on the nature, duration, and severity of the work load. Thus, pressure overload is more potent to induce these modifications. In the hearts subjected to pressure overload, action potential alterations appear more rapidly and are more marked for the same degree of hypertrophy than those of the volume-hypertrophied myocardium. Furthermore, such data also demonstrate that the early alteration of the action potential during the development of compensatory hypertrophy is a prolongation of the later phase of repolarization (phase 3), without prolongation of the other repolarization phases (1 and 2). This change appears 3 days after aortic constriction, 1 month after coronary artery ligation (in the healthy part of the left ventricle), and 1 month after an aortocaval fistula.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Removal of vascular smooth muscle cells (SMC) from their native environment alters the biochemical and mechanical signals responsible for maintaining normal cell function, causing a shift from a quiescent, contractile phenotype to a more proliferative, synthetic state. We examined the effect on SMC function of culture on two-dimensional (2D) substrates and in three-dimensional (3D) collagen Type I gels, including the effect of exogenous biochemical stimulation on gel compaction, cell proliferation, and expression of the contractile protein smooth muscle alpha-actin (SMA) in these systems. Embedding of SMC in 3D collagen matrices caused a marked decrease in both cell proliferation and expression of SMA. The presence of the extracellular matrix modulated cellular responses to platelet-derived growth factor BB, heparin, transforming growth factor-beta1, and endothelial cell-conditioned medium. Cell proliferation and SMA expression were shown to be inversely related, while gel compaction and SMA expression were not correlated. Taken together, these results show that SMC phenotype and function can be modulated using biochemical stimulation in vitro, but that the effects produced are dependent on the nature of the extracellular matrix. These findings have implications for the study of vascular biology in vitro, as well as for the development of engineered vascular tissues.  相似文献   

3.
4.
In normal development and pathology, the vascular system depends on complex interactions between cellular elements, biochemical molecules, and physical forces. The electrokinetic vascular streaming potential (EVSP) is an endogenous extremely low frequency (ELF) electrical field resulting from blood flowing past the vessel wall. While generally unrecognized, it is a ubiquitous electrical biophysical force to which the vascular tree is exposed. Extracellular matrix elastin plays a central role in normal blood vessel function and in the development of atherosclerosis. It was hypothesized that ELF fields of low amplitude would alter elastin accumulation, supporting a link between the EVSP and the biology of vascular smooth muscle cells. Neonatal rat aortic smooth muscle cell cultures were exposed chronically to electrical fields characteristic of the EVSP. Extracellular protein accumulation, DNA content, and electron microscopic (EM) evaluation were performed after 2 weeks of exposure. Stimulated cultures showed no significant change in cellular proliferation as measured by the DNA concentration. The per‐DNA normalized protein in the extracellular matrix was unchanged while extracellular elastin accumulation decreased 38% on average. EM analysis showed that the stimulated cells had a 2.85‐fold increase in mitochondrial number. These results support the formulation that ELF fields are a potential factor in both normal vessel biology and in the pathogenesis of atherosclerotic diseases including heart disease, stroke, and peripheral vascular disease. Bioelectromagnetics 34:358–365, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Red blood cell targeting to smooth muscle cells   总被引:1,自引:0,他引:1  
Monoclonal antibody discriminating between endothelial and smooth muscle cells is suggested to be used as a vector for directed transport of drugs to injured (denuded) areas of blood vessel wall. An in vitro model system was used in the studies: vascular smooth muscle or endothelial cells grown on plastic surface were treated with specific mouse monoclonal antibody recognizing an antigen localized on the surface of smooth muscle rather than endothelial cells; then erythrocytes coated with secondary (rabbit antimouse) antibodies were added. The results were analyzed spectrophotometrically or with scanning electron microscopy. Under the experimental conditions, erythrocytes, possible 'containers' for carrying the drugs, were found to bind only to smooth muscle cells. The data show that antibody provides absolute discrimination between endothelial and smooth muscle cells and, thus, may be used as a vector for drug targeting.  相似文献   

6.
Adult C3H/He mice were rendered unresponsive to a primary injection of sheep red blood cells (SRBC) by pretreatment with sheep hemolysate supernatant (SHS) or subfractions of SHS isolated by column chromatography. The following effects of SHS on the immune response were observed: SHS did not kill antigen-reactive cells, it did not prevent the release of antibody by cells actively synthesizing and secreting antibody, and SHS-induced tolerance was not inhibited or abrogated by methods which terminate or abolish tolerance. In addition, cell-mediated responses were not affected in animals whose humoral responses were suppressed; however, the secondary plaque-forming cell (PFC) response was enhanced by SHS treatment. SDS gel electrophoresis revealed SHS to contain several proteins ranging from 12,000 to approximately 500,000 daltons.  相似文献   

7.
The morphology of vascular smooth muscle cells (SMCs) in the normal physiological state depends on cytoskeletal distribution and topology beneath, and presents vertical to the direction of blood flow shear stress (FFSS) although SMCs physiologically are not directly exposed to the shear conditions of blood flow. However, this condition is relevant for arteriosclerotic plaques and the sites of a vascular stent, and little of this condition in vitro has been studied and reported till now. It is unclear what will happen to SMC morphology, phenotype and function when the direction of the blood flow changed. In this paper, the distribution of SMCs in a specific area on Ti surface was regulated by micro-strips of hyaluronic acid (HA). Cell morphology depended on the distribution of the cytoskeleton extending along the micrographic direction. Simulated vascular FFSS was perpendicular or parallel to the direction of the cytoskeleton distribution. Based on investigating the morphology, apoptotic number, phenotypes and functional factors of SMCs, it was obtained that SMCs of vertical groups showed more apoptosis, expressed more contractile types and secreted less TGF-β1 factor compared with SMCs of parallel groups, the number of ECs cultured by medium from SMCs of parallel groups was larger than vertical groups. This study could help to understand the effect of direction change of FFSS on patterned SMC morphology, phenotype and function.  相似文献   

8.
9.
Arterial smooth muscle cells from rabbit aortic media in primary culture and subculture were grown on hydrophilized and collagen-coated silicone membranes which were then subjected to cyclic and directional stretches and relaxations at a frequency of 60 times/min. The membranes were stretched with various amplitudes ranging from 2% to 20%. Smooth muscle cells on unstretched membranes in the same incubation chamber served as controls. In long-term experiments the stretching and relaxing of the membranes was continued for several days. While the smooth muscle cells grown on unstretched membranes remained in random orientation in all experiments, the cells which underwent mechanical stimulation showed a high degree of orientation. The angle of cell orientation varied in direct relation to the stretching amplitude and became steeper in correlation to the intensity of the mechanical stimulus. The angle of cell orientation was reversible, as preoriented cells changed their orientation when another stretching amplitude was applied. To study the role of cytoskeleton in the process of cell orientation, we examined the behaviour of the intracellular actin filament system. In short-term experiments the smooth muscle cells were exposed for 3 to 12 h to cyclic and directional stretches and relaxations with an amplitude of 10%. We observed a rearrangement of the intracellular actin filament system prior to the orientation of the whole cell bodies. The present study provides evidence that stretching the artery wall by blood pulsation may result in an orientation response of the intracellular actin cytoskeleton and in the orientation of the smooth muscle cells within the media of artery walls.  相似文献   

10.
11.
Diabetes mellitus is associated with an increased risk of cardiovascular disease. In order to elucidate the association between hyperglycemia and vascular complications, the growth patterns of vascular smooth muscle cells were studied under high glucose conditions. We examined the effect of culturing porcine aortic smooth muscle cells (PVSMC) in high glucose (25 mM, HG) on total cell protein, cell volume, DNA synthesis and cell number. We observed that cells cultured in HG had higher total cell protein content which was associated with increased cell volume as compared to the cells cultured under normoglycemic conditions (5.5 mM glucose, NG). PVSMC cultured in HG also had 1.4 fold increased growth rate and a greater fetal calf serum-induced DNA synthesis rate compared to cells cultured in NG. These observations suggest for the first time that elevated glucose could lead to both hypertrophic and hyperplastic effects in PVSMC. We also examined protein kinase C (PKC) activities as well as the cellular levels of the 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid (12-HETE) in NG and HG as possible mechanisms for the enhanced growth effects in HG. The results show that PVSMC cultured in HG have increased PKC activity as well as increased levels of 12-HETE. Therefore hyperglycemia may be linked to accelerated vascular disease by increasing smooth muscle cell growth and proliferation.  相似文献   

12.
A rise in intracellular calcium is the predominant signal that leads to the activation of the contractile machinery in gastrointestinal smooth muscle. The primary sources of activating calcium are illustrated in Fig. 2. Voltage- and peptide-mediated release of intracellular calcium contribute to activation of some gastrointestinal smooth muscles. However, the primary source of activating calcium appears to be an influx of calcium across the plasma membrane. The degree of modulation of electrical activity by peptides varies depending upon the region of the gastrointestinal tract studied. Second messenger systems are undoubtly involved in the transduction pathway for receptor-mediated changes in ion channel activity in gastrointestinal smooth muscle. However, in comparison to other excitable cell types, little is known about the coupling mechanisms whereby peptide-receptor binding alters ion channel activity in gastrointestinal smooth muscle. This represents one of the challenging areas to be studied in the field of gastrointestinal smooth muscle. One disease in which a better appreciation of the regulation of ion channel activity could lead to therapeutic benefit is irritable bowel syndrome. A coupling of smooth muscle electrical activity to hypermotility in irritable bowel syndrome has been reported. CCK increases the level of spike activity which triggers hypermotility [40]. It would follow that inhibition of calcium influx should reduce spiking and, therefore, hypermotility. In fact, the calcium channel blockers nifedipine and nicardipine have been shown to decrease colonic motility in irritable bowel syndrome patients [62-64]. As our understanding of gastrointestinal smooth muscle ion channels expands, development of a gastrointestinal selective calcium channel blocker may be possible. This class of agents would be effective in the treatment of irritable bowel syndrome and potentially other peptide-related spastic smooth muscle disorders.  相似文献   

13.
14.
The rationale was to investigate the effects of low-energy electromagnetic fields (EMF) on the proliferation of bovine coronary and murine aortic smooth muscle cells (SMC). EMF were applied to SMC at field frequencies of 25, 50, or 100 Hz, and exposure time was set to 5, 15, or 30 minutes. Significant increases in SMC-counts compared with sham exposed controls were found for all EMF-frequencies tested. The effect was most pronounced for 50 Hz fields with maximum increases of 1.2-fold over controls. Sequential double exposure of mouse aortic SMC to 50 Hz fields revealed significantly enhanced cell proliferation by 1.2 fold compared with single exposure (p < 0.05). Experiments performed on bovine SMC also revealed significant increases in cell proliferation. The results demonstrate that EMF are capable of significantly enhancing the proliferation of vascular SMC. These results rise the question whether EMF would qualify as supportive means to angio-/arteriogenic approaches.  相似文献   

15.
Beroe muscle fibers are single cells which may be 20-40 micrometer in diameter in mature specimens. Longitudinal muscles may be 6 cm or more long. There is no striation pattern and the muscles were observed to contract in a tonic fashion when stretched. They are innervated by a nerve net, and external recording revealed what are probably nerve net impulses. Intracellular stimulation of the muscles themselves was found to initiate large propagating action potentials which were recorded intracellularly. The action potentials were insensitive to tetrodotoxin (10(-5) g/ml), tetraethylammonium ions (50 mM), MnCl2 (25 mM), and low concentrations of verapamil (2 X 10(-6) g/ml). Full-size action potentials were recorded in sodium- or calcium-deficient salines, but were small and graded in salines deficient in both sodium and calcium. Cable analysis yielded mean values for lambda (1.95 mm), Ri (154 omega cm), Rm (9,253 omega cm2), and tau m (13.9 ms). The conduction velocity depended primarily on fiber diameter and maximum rate of rise of the action potential and could be predicted from the theoretical analysis of Hunter et al. (1975 Prog. Biophys. Mol. Biol. 30: 99-144). The calculated membrane capacity (less than microF/cm2) indicates little infolding of the surface membrane, a conclusion which is in agreement with anatomical studies.  相似文献   

16.
Fractalkine/CX3C-chemokine ligand 1 is expressed as a membrane-spanning adhesion molecule that can be cleaved from the cell surface to produce a soluble chemoattractant. Within the vasculature, fractalkine is known to be generated by endothelial cells, but to date there are no reports describing its expression by smooth muscle cells (SMC). In this study we demonstrate that IFN-gamma and TNF-alpha, but not IL-1beta, cooperate synergistically to induce fractalkine mRNA and protein expression in cultured aortic SMC. We also report the release of functional, soluble fractalkine from the membranes of stimulated SMC. This release is inhibited by the zinc metalloproteinase inhibitor batimastat, resulting in the accumulation of membrane-associated fractalkine on the SMC surface. Therefore, an SMC-derived metalloproteinase activity is involved in fractalkine shedding. While soluble fractalkine present in SMC-conditioned medium is capable of inducing calcium transients in cells expressing the fractalkine receptor (CX3CR1), blocking experiments using neutralizing Abs reveal that it can be inactivated without affecting the chemotactic activity of SMC-conditioned media on monocytes. However, membrane-bound fractalkine plays a major role in promoting adhesion of monocytic cells to activated SMC. This fractalkine-mediated adhesion is further enhanced in the presence of batimastat, indicating that shedding of fractalkine from the cell surface down-regulates the adhesive properties of SMC. Hence, during vascular inflammation, the synergistic induction of fractalkine by IFN-gamma and TNF-alpha together with its metalloproteinase-mediated cleavage may finely control the recruitment of monocytes to SMC within the blood vessel wall.  相似文献   

17.
18.
19.
An inverse relationship between temperature and the negative inotropic response of tracheal smooth muscle segments to isoproterenol was demonstrated at resting tension and following precontraction with histamine. In addition, the β-blocking effect of propranolol was more pronounced at higher temperatures. These findings suggest that in asthmatic patients fever might be one of the factors which contribute to diminished responsiveness of sympathomimetic bronchodilators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号