首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   

2.
Understanding how populations are genetically and demographically connected is beneficial for species management, since gene flow and dispersal contribute to genetic diversity and population persistence. For hellbenders (Cryptobranchus alleganiensis), an aquatic salamander species experiencing dramatic declines in population size, fine-scale (i.e. within river) patterns of genetic diversity and gene flow are not well understood. Previous findings indicate that hellbenders are habitat specialists that exhibit extreme site fidelity and low vagility, suggesting that gene flow is restricted among the several, discrete habitat patches within a river. Using 15 polymorphic microsatellite loci and 497 hellbender samples from four Missouri rivers, we assessed fine-scale patterns of genetic diversity in order to infer population connectivity and aid in population management. Results indicate moderate levels of genetic variation (HO = 0.66–0.78) with little differentiation among habitat patches (avg. FST = 0.002) and no evidence of isolation by distance. Our data suggest that hellbender gene flow has been extensive even among habitat patches separated by distances greater than >100 km. These results are useful for hellbender management, especially in terms of making informed decisions regarding restorative releases of captively propagated individuals.  相似文献   

3.
We assessed the genetic structure and diversity of Reithrodontomys spectabilis, a critically endangered, endemic rodent from Cozumel Island, México. A total of 90 individuals were trapped from September 2001 to January 2005. Microsatellite data analysis revealed high genetic diversity values: a total of 113 alleles (average 12.5 per locus), H o  = 0.78, H e  = 0.80. These high values can be related to Cozumel’s size (478 km2) and extensive native vegetation cover, factors that could be promoting a suitable population size, high heterozygosity and the persistence of rare alleles in the species, as well as some long-term movement of individuals between sampling localities. A strong genetic structure was also observed, with at least four genetic groups, associated with a pattern of isolation by distance. We found a strong allelic and genetic differentiation shown between localities, with negligible recent gene flow and low inbreeding coefficients. The species life history and ecological characteristics—being nocturnal, semi-terrestrial, a good tree climber, having lunar phobia and significant edge effect—are likely affecting its genetic structure and differentiation. The high genetic diversity and population structure award R. spectabilis a significant conservation value. Our results can serve as a basis for future research and conservation of the species, particularly considering the problems the island is facing from habitat perturbation, urbanization and introduction of exotic species. In view of the structure and genetic variability observed, it is essential to establish and reinforce protected areas and management programs for the conservation of the endemic and endangered Cozumel Harvest mice.  相似文献   

4.
5.
The burnet moth Zygaena anthyllidis, endemic to the high elevations of the Pyrenees, is vulnerable to land-use. In order to identify conservation priorities based on an assessment of genetic diversity within populations and gene flow among populations, we examined Z. anthyllidis’ genetic variability and differentiation based on allozyme electrophoresis from seven populations scattered across its entire range. In comparison to other mountain Lepidoptera, the populations studied exhibit a low level of genetic diversity. Remarkable between-population differentiation (F ST = 0.053), the presence of private alleles, and the lack of significant isolation-by-distance pattern characterises the genetic make-up of the species. We interpreted the pattern of genetic differentiation as a consequence of low dispersal power in combination with insufficient landscape connectivity. Ongoing land-use change might reinforce genetic differentiation due to habitat fragmentation and additionally affect negatively allozyme variability at shifting range margins, i.e. the capacity to adapt to changing environments. We therefore suggest creating a network of suitable habitats at the landscape scale to facilitate genetic exchange and to conserve the species’ overall genetic variability.  相似文献   

6.
Levels of genetic diversity and population genetic structure of the rare, endangered terrestrial orchid Liparis japonica were examined for eight natural populations (n = 185) in Northeast China using six AFLP primer pairs, where this species has experienced severe habitat loss and fragmentation. Based on 406 DNA bands, a high level of genetic diversity was found at the species level with the PPB of 85.47 %, while the genetic diversity at the population level was low (PPB = 47.48 %). A significantly high degree of population differentiation was found with 42.69 % variation existed among populations as measured by AMOVA, indicating potential restricted gene flow. The genetic distances between populations were independent of the corresponding geographic distances, and the genetic relationship of individuals had no significant correlation with their spatial distribution. The restricted gene flow might be impacted by reduced population size, habitat destruction and fragmentation. The results in this study suggested that habitat protection and keeping a stable environment are critical for the conservation of L. japonica species.  相似文献   

7.
In continuous populations, fine-scale genetic structure tends to be stronger in species with restricted pollen and seed dispersal. However, habitat fragmentation and disturbances can affect genetic diversity and spatial genetic structure due to disruption in ecological processes, such as plant reproduction and seed dispersal. In this study, we compared the genetic diversity and fine-scale spatial genetic structure (SGS) in two populations of Annona crassiflora (Annonaceae) in a pristine savanna Reserve (ESECAE) and in a fragmented disturbed savanna area (PABE), both in Cerrado biome in Central Brazil. The analyses were based on the polymorphism at 10 microsatellite loci. Our working hypothesis was that SGS is stronger and genetic diversity is lower in population at fragmented area (PABE) than at pristine area (ESECAE). Both populations presented high levels of polymorphism and genetic diversity and showed no sign of bottleneck for both Wilcoxon sign-rank test for heterozygosity excess (p > 0.05) and coalescent analyses (growth parameter g not different from zero), but population at fragmented area showed higher fixation index and stronger SGS. Besides, populations are significantly differentiated (F ST = 0.239, R ST = 0.483, p < 0.001 for both). Coalescent analyses showed high historical effective population sizes for both populations, high gene flow between ESECAE and PABE and recent time to most recent common ancestor (~37 k year BP). Our results suggest that despite the high genetic diversity, fragmentation and disturbance may have been affecting populations of this species increasing mating between closely related individuals leading to high fixation index and strong SGS.  相似文献   

8.
Land use in Madagascar has resulted in extensive deforestation and forest fragmentation. Endemic species, such as the black-and-white ruffed lemur (Varecia variegata), may be vulnerable to habitat fragmentation due to patchy geographic distributions and sensitivities to forest disturbance. We tested for genetic differentiation among black-and-white ruffed lemur groups in two sites in a large forest patch and three sites in smaller patches. We also investigated the relationship between the genetic diversity of populations and patch configuration (size and isolation), as well as the presence or absence of past genetic bottlenecks. We collected blood (n = 22 individuals) or fecal (n = 33) samples from lemurs and genotyped the extracted DNA for 16 polymorphic microsatellites. Bayesian cluster analysis and FST assigned individuals to three populations: Ranomafana (two sites in continuous forest), Kianjavato (two fragments separated by 60 m of non-forest), and Vatovavy (a single fragment, more isolated in time and space). Vatovavy showed significantly lower allelic richness than Ranomafana. Kianjavato also appeared to have lower allelic richness than Ranomafana, though the difference was not significant. Vatovavy was also the only population with a genetic bottleneck indicated under more than one mutation model and a significant FIS value, showing excess heterozygosity. These results indicate that a small geographic separation may not be sufficient for genetic differentiation of black-and-white ruffed lemur populations and that patch size may influence the rapidity with which genetic diversity is lost following patch isolation.  相似文献   

9.
Habitat loss, fragmentation of meadow patches, and global climate change (GCC) threaten plant communities of montane grasslands. We analyzed the genetic structure of the montane herb Geranium sylvaticum L. on a local scale in order to understand the effects of habitat fragmentation and potential GCC impacts on genetic diversity and differentiation. Amplified fragment length polymorphism (AFLP) fingerprinting and cpDNA sequencing was performed for 295 individuals of 15 G. sylvaticum populations spanning the entire distribution range of the species in the Taunus mountain range in Germany. We found patterns of substantial genetic differentiation among populations using 150 polymorphic AFLP markers (mean F ST = 0.105), but no variation in 896 bp of plastid DNA sequences. While populations in the center of their local distribution range were genetically diverse and less differentiated, higher F ST values and reduced genetic variability was revealed for the populations at the low-altitudinal distribution margins. Projections of GCC effects on the distribution of G. sylvaticum in 2050 showed that GCC will likely lead to the extinction of most edge populations. To maintain regional genetic diversity, conservation efforts should focus on the diverse high-altitude populations, although a potential loss of unique variations in genetically differentiated peripheral populations could lower the overall genetic diversity and potentially the long-term viability in the study region. This study documents the usefulness of fine-scale assessments of genetic population structure in combination with niche modeling to reveal priority regions for the effective long-term conservation of populations and their genetic variation under climate change.  相似文献   

10.
Habitat loss and fragmentation can have detrimental effects on all levels of biodiversity, including genetic variation. Most studies that investigate genetic effects of habitat loss and fragmentation focus on analysing genetic data from a single landscape. However, our understanding of habitat loss effects on landscape-wide patterns of biodiversity would benefit from studies that are based on quantitative comparisons among multiple study landscapes. Here, we use such a landscape-level study design to compare genetic variation in the forest-specialist marsupial Marmosops incanus from four 10,000-hectare Atlantic forest landscapes which differ in the amount of their remaining native forest cover (86, 49, 31, 11 %). Additionally, we used a model selection framework to evaluate the influence of patch characteristics on genetic variation within each landscape. We genotyped 529 individuals with 12 microsatellites to statistically compare estimates of genetic diversity and genetic differentiation in populations inhabiting different forest patches within the landscapes. Our study indicates that before the extinction of the specialist species (here in the 11 % landscape) genetic diversity is significantly reduced in the 31 % landscape, while genetic differentiation is significantly higher in the 49 and 31 % landscapes compared to the 86 % landscape. Results further provide evidence for non-proportional responses of genetic diversity and differentiation to increasing habitat loss, and suggest that local patch isolation impacts gene flow and genetic connectivity only in the 31 % landscape. These results have high relevance for analysing landscape genetic relationships and emphasize the importance of landscape-level study designs for understanding habitat loss effects on all levels of biodiversity.  相似文献   

11.
Mexican oregano is an aromatic plant traditionally harvested from wild populations by rural communities; however, there is little information about population genetics aspects of this species. Moreover, considering that the variation in essential oil production of aromatic plants has been attributed to several environmental as well as genetic factors, in this study we estimated the genetic diversity and genetic structure from 14 wild populations of L. graveolens located in four different bioclimatic regions in southeastern Mexico using AFLP markers. The overall genetic diversity of L. graveolens described as the percentage of polymorphic loci (PPL = 60.9 %) and Nei’s gene diversity (H j  = 0.17) was moderate, but not associated with the bioclimatic conditions. Genetic variation was analyzed at chemotype and population levels. Regarding chemotypes, thymol had the highest genetic diversity (PPL = 82.8 % and H j  = 0.22). PCoA revealed that chemotypes exhibit a certain level of genetic differentiation. Maximum parsimony dendrogram showed a grouping of individuals with a predominant chemotype. Bayesian analyses revealed a low, but significant differentiation among chemotypes (θ ΙΙ = 0.008). Regarding populations, gene diversity showed significant differences (F 13,1204 = 22.8, P < 0.001); populations dominated by individuals from the thymol chemotype showed the highest gene diversity (H j  = 0.31–0.25), while populations with exclusively sesquiterpene chemotype showed the lowest value (H j  = 0.058). Cluster and Bayesian analyses (θ ΙΙ = 0.027) revealed a low level of genetic differentiation among populations. Correlation analysis showed a significant association between the distance matrices based on the genetic markers (AFLP) and chemical compounds of essential oil (r = 0.06, P < 0.001). Our results suggest an important genetic influence on the observed chemical profiles. Nevertheless, other biotic and abiotic environmental pressures also play an important role in determining the chemotype and structure found in this aromatic species.  相似文献   

12.
Currently, many Brazilian orchids are threatened with extinction resulting from habitat loss and intense harvesting pressure stemming from their value as ornamental plants. Therefore, the genetic diversity in remaining populations is fundamental to the survival of these species in natural environments. In order to inform conservation strategies, this study evaluated the genetic diversity and structure of Cattleya granulosa populations. The sample consisted of 151 individuals from 12 populations in the Atlantic Forest, northeastern Brazil, evaluated using 91 ISSR markers. Genetic variability was assessed through molecular variance, diversity indexes, clusters of genotypes through Bayesian analysis, and tests for genetic bottlenecks. From all polymorphic loci, genetic diversity (HE) varied between 0.210 and 0.321 and the Shannon index ranged from 0.323 and 0.472. Significant genetic differentiation between populations (ΦST = 0.391; P < 0.0001) resulted in the division of the populations into five groups based on the log-likelihood Bayesian analysis. We found significant positive correlation between geographical and genetic distances between populations (r = 0.794; P = 0.017), indicating isolation by distance. Patterns of allelic diversity within populations suggest the occurrence of bottlenecks in most C. granulosa populations (n = 8). Therefore, in order to maintain the genetic diversity of the species, the conservation of spatially distant groups is necessary.  相似文献   

13.
Population decline and fragmentation often lead to reduced genetic diversity and population differentiation. Habitat destruction throughout Madagascar has caused population decline and extinction of many endemic species. Lemur populations, including those of the largest extant lemur, Indri indri, have been fragmented into remaining forest patches. We assessed the level of genetic diversity in indri populations in three protected reserves by genotyping a total of 43 individuals at 17 microsatellite loci. Genetic diversity in terms of heterozygosity was high in all three reserves, with no differences between reserves. Population structure and F ST analyses revealed Analamazaotra Forest Station and the Torotorofotsy Conservation Area, which are separated by ca. 18 km to be genetically differentiated from each other with some admixture. Betampona Strict Nature Reserve, which is separated from the other reserves by ca. 130 km, exhibited clear population genetic differentiation, with no signs of admixture with the other reserves. Our genetic diversity estimates are similar to those for other Indridae in similar habitats and may reflect past rather than current population processes, given that populations have declined recently. Our results suggest that Betampona may be genetically isolated and that it is important to maintain gene flow between remaining populations to prevent loss of genetic diversity for the future conservation of Indri indri.  相似文献   

14.
When habitat becomes fragmented, populations of species may become increasingly isolated. In the absence of habitat corridors, genetic structure may develop and populations risk reductions in genetic diversity from increased genetic drift and inbreeding. Deforestation of the Cerrado biome of Brazil, particularly of the dry forests within the Paranã River Basin, has incrementally occurred since the 1970s and increased forest fragmentation within the region. We performed landscape genetic analyses of Pfrimer’s parakeet (Pyrrhura pfrimeri), a globally endangered endemic to the region, to determine if forest fragmentation patterns were associated with genetic structuring in this species. We used previously generated satellite imagery that identified the locations of Paranã River Basin forest fragments in 1977, 1993/94, and 2008. Behavioral data quantifying the affinity of Pfrimer’s parakeet for forest habitat was used to parameterize empirically derived landscape conductance surfaces. Though genetic structure was observed among Pfrimer’s parakeet populations, no association between genetic and geographic distance was detected. Likewise, least cost path lengths, circuit theory-based resistance distances, and a new measure of least cost path length complexity could not be conclusively associated with genetic structure patterns. Instead, a new quantity that encapsulated connection redundancy from the 1977 forest fragmentation data provided the clearest associations with pairwise genetic differentiation patterns (Jost’s D: r = 0.72, P = 0.006; FST: r = 0.741, P = 0.001). Our analyses suggest a 35-year or more lag between deforestation and its effect on genetic structure. Because 66 % of the Paranã River Basin has been deforested since 1977, we expect that genetic structure will increase substantially among Pfrimer’s Parakeet populations in the future, especially if fragmentation continues at its current pace.  相似文献   

15.
When rare plants are distributed across a range of habitats, ecotypic differentiation may arise requiring customized conservation measures. The rate of local adaptation may be accelerated in complex landscapes with numerous physical barriers to gene flow. In such cases, examining the distribution of genetic diversity is essential in determining conservation management units. We investigated the distribution of genetic diversity in the federally threatened Camissonia benitensis (Onagraceae), which grows in two distinct serpentine habitats across several watersheds in San Benito, Fresno, and Monterey Cos., CA, USA. We compared genetic diversity with that of its two widespread relatives, C. contorta and C. strigulosa, and examined the potential for hybridization with the latter species. Genotyping results using seven heterospecific microsatellite markers indicate that differentiation between habitat types was weak (F ST = 0.0433) and in an AMOVA analysis, there was no significant partitioning of molecular variation between habitats. Watersheds accounted for 11.6 % of the molecular variation (pairwise F ST = 0.1823–0.4275). Three cryptic genetic clusters were identified by InStruct and STRUCTURE that do not correlate with habitat or watershed. C. benitensis exhibits 5–11× higher inbreeding levels and 0.54× lower genetic diversity in comparison to its close relatives. We found no evidence of hybridization between C. benitensis and C. strigulosa. To maximize conservation of the limited amount of genetic diversity in C. benitensis, we recommend mixing seed representing the three cryptic genetic clusters across the species’ geographic range when establishing new populations.  相似文献   

16.
Litsea szemaois (Lauraceae) is an endemic and endangered species from the tropical rain forests of Xishuangbanna, southern Yunnan, SW China, but habitat fragmentation, especially exacerbated by rubber planting, has caused a decline in population size of the species. AFLP and ISSR were used to investigate the genetic diversity and population structure of eight populations from across its known distribution. Three AFLP and ten ISSR primer combinations produced a total of 203 and 77 unambiguous and repeatable bands respectively, of which 164 (80.8%) and 67 (87.0%) were polymorphic for the two markers. These two markers showed that Litsea szemaois exhibits comparatively high genetic diversity at species level (heterozygosity (hs) = 0.2109) relative to some other Lauraceae. Most of the genetic variation was partitioned within populations, but genetic differentiation between populations was significant and relatively high (Φ st = 0.2420, θ= 0.1986) compared with other tropical plants. The genetic characteristics of L. szemaois may be related to its outbreeding system, insect pollination and fragmented distribution. Because L. szemaois is dioecious and slow to mature, ex situ conservation across its genetic diversity is unlikely to succeed, although seedlings grow well under cultivation. Thus, in situ conservation is very important for this endangered species, especially as only 133 adult individuals are known in the wild. In particular, the Nabanhe and Mandian populations should be given a high conservation priority due to their higher genetic diversity, larger population size and better field condition, but wider sampling is required across all populations to determine additional areas with significant genetic conservation value.  相似文献   

17.
Swift fox (Vulpes velox) were historically distributed in southwestern South Dakota including the region surrounding Badlands National Park (BNP). The species declined during the mid-1800s, largely due to habitat loss and poisoning targeted at wolves (Canis lupus) and coyotes (Canis latrans). Only a small population of swift foxes near Ardmore, which is located in Fall River County, South Dakota, persisted. In 2003, a reintroduction program was initiated at BNP with swift foxes translocated from Colorado and Wyoming. Foxes released in the years 2003, 2004 and 2005 were translocated from Colorado (BNP-Colorado) whereas in 2006, released foxes were translocated from Wyoming (BNP-Wyoming). Our objective was to evaluate genetic diversity and structure of the restored swift fox population in the area surrounding BNP compared to source fox populations in an area of Colorado and Wyoming, as well as the local swift fox population neighboring BNP near Ardmore in Fall River County, South Dakota. A total of 400 swift foxes (28 released in 2003, 28 released in 2004, 26 released in 2005, 26 released in 2006, 252 wild-born foxes, 40 individual foxes from the Ardmore area of South Dakota) was genotyped using twelve microsatellite loci. We report mean gene diversity values of 0.778 (SD = 0.156) for the BNP-Colorado population, 0.753 (SD = 0.165) for the BNP-Wyoming population, 0.751 (SD = 0.171) for the BNP population, and 0.730 (SD = 0.166) for the Fall River population. We also obtained Fst values ranging from 0.014 to 0.029 for pair-wise comparisons of fox populations (BNP, Fall River, BNP-Wyoming, BNP-Colorado). We conclude that the reintroduced fox population around BNP has high genetic diversity comparable to its source populations in Colorado and Wyoming. Although genetic diversity indicates that the reintroduction was successful, additional time is necessary to fully evaluate long-term genetic maintenance and interconnectivity among these populations.  相似文献   

18.
19.
Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = ?0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.  相似文献   

20.
Roads can substantially impact the population connectivity of a wide range of terrestrial vertebrates, often resulting in loss of genetic diversity and an increase of spatial genetic structure. We studied the Western Diamond-backed Rattlesnake (Crotalus atrox), a large and abundant venomous predator, to test the hypothesis that a large and relatively new roadway in Arizona (Interstate Highway I-10) is a barrier that impacts gene flow and population genetics via habitat fragmentation. Based on 72 C. atrox sampled from three specific sampling sites (“subpopulations”) on both the west and east corridors of I-10, we used 30 nuclear microsatellite DNA loci and three mitochondrial DNA genes (2615 bp) to assess genetic diversity and structure, estimate effective population size (N e ), and describe patterns of gene flow. We found no evidence for loss of genetic diversity or a decrease in N e between the three subpopulations. Our microsatellite analysis showed that two subpopulations in close proximity (4 km), but separated by I-10, showed greater levels of genetic differentiation than two subpopulations that were separated by a greater distance (7 km) and not by I-10 or any other obvious barriers. Mitochondrial DNA analyses showed no significant genetic differentiation nor any indication of historically impeded gene flow. Tajima’s D and mismatch distribution tests revealed that demographic expansion is occurring in the overall population (all three subpopulations). Bayesian clustering and spatial genetic autocorrelation analyses of microsatellite data showed resistance to gene flow at the approximate location of I-10. Simulations that investigated gene flow between the subpopulations (with and without a highway barrier present) were consistent with our molecular results. We conclude that I-10 has reduced gene flow in a population of an important reptilian predator of the Sonoran Desert in southern Arizona and make conservation recommendations for reversing this trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号