首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Understanding the factors that promote or inhibit species formation remains a central focus in evolutionary biology. It has been difficult to make generalities about the process of ecological speciation in particular given that each example is somewhat idiosyncratic. Here we use a case study of replicated ecological speciation in the same selective environment to assess factors that account for similarities and differences across taxa in progress towards ecological speciation. We study three different species of lizards on the gypsum sand dunes of White Sands, New Mexico, and present evidence that all three fulfill the essential factors for ecological speciation. We use multilocus nuclear data to show that progress toward ecological speciation is unequal across the three species. We also use morphometric data to show that traits other than color are likely under selection and that selection at White Sands is both strong and multifarious. Finally, we implicate geographic context to explain difference in progress toward speciation in the three species. We suggest that evaluating cases from the natural world that are \"same same but different\" can reveal the mechanisms of ecological speciation.  相似文献   

2.
    
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near‐complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.  相似文献   

3.
    
Species hybridization, and thus the potential for gene flow, was once viewed as reproductive mistake. However, recent analysis based on large datasets and newly developed models suggest that gene exchange is not as rare as originally suspected. To investigate the history and speciation of the closely related species Drosophila subobscura, D. madeirensis, and D. guanche, we obtained polymorphism and divergence data for 26 regions throughout the genome, including the Y chromosome and mitochondrial DNA. We found that the D. subobscura X/autosome ratio of silent nucleotide diversity is significantly smaller than the 0.75 expected under neutrality. This pattern, if held genomewide, may reflect a faster accumulation of beneficial mutations on the X chromosome than on autosomes. We also detected evidence of gene flow in autosomal regions, while sex chromosomes remain distinct. This is consistent with the large X effect on hybrid male sterility seen in this system and the presence of two X chromosome inversions fixed between species. Overall, our data conform to chromosomal speciation models in which rearrangements are proposed to serve as gene flow barriers. Contrary to other observations in Drosophila, the mitochondrial genome appears resilient to gene flow in the presence of nuclear exchange.  相似文献   

4.
Significant progress in evolutionary genetics has been made by studying, on the one hand, patterns of DNA sequence polymorphism and, on the other, genetic architecture of complex adaptive traits. However, connections between nucleotide variants under selection and adaptively relevant phenotypes are missing. Such connections can be established using precise gene replacement. We review the recent successful introduction of this technique to the analysis of two evolutionarily interesting loci--Odysseus and desaturase2. Both genes have subtle phenotypes that nevertheless could be identified using gene replacement, demonstrating that effects of naturally occurring alleles can be measured in the laboratory. This is an important first step in connecting statistical signatures of selection with adaptation in nature. More candidate genes involved in adaptation, for example, through cloning of genes responsible for reproductive isolation, now need to be identified. Molecular genetic manipulation, DNA polymorphism analysis, and field studies then have to be integrated to provide fresh insights into the mechanisms of evolutionary change.  相似文献   

5.
  总被引:1,自引:0,他引:1  
Quantitative trait locus (QTL) mapping has become an established and effective method for studying the genetic architecture of complex traits. In this report, we use a QTL mapping approach in combination with data from a large selection experiment in Arabidopsis thaliana to explore a response to selection of experimental populations with differentiated genetic backgrounds. Experimental populations with genetic backgrounds derived from ecotypes Landsberg and Niederzenz were exposed to multiple generations of fertility and viability selection. This selection resulted in phenotypic shifts in a number of life-history and fitness-related characters including early development time, flowering time, dry biomass, longevity, and fruit production. Quantitative trait loci were mapped for these traits and their positions were compared to previously characterized allele frequency changes in the experimental populations (Ungerer et al. 2003). Quantitative trait locus positions largely colocalized with genomic regions under strong and consistent selection in populations with differentiated genetic backgrounds, suggesting that alleles for these traits were selected similarly in differentiated genetic backgrounds. However, one QTL region exhibited a more variable response; being positively selected on one genetic background but apparently neutral in another. This study demonstrates how QTL mapping approaches can be combined with map-based population genetic data to study how selection acts on standing genetic variation in populations.  相似文献   

6.
7.
    
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage‐specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne. Utilizing population‐level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population‐scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST, PBS, dxy) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.  相似文献   

8.
A. Falek 《Human Evolution》1990,5(2):195-206
An introduction to the potential of gene therapy to alleviate illness and death particularly for many rare human genetic disorders and specific forms of cancer is presented. At present, genetic engineering, that is gene therapy to correct some of these disorders based on new molecular biology procedures is a possibility in the near future especially those with single gene mendelian inherited transmission. After a short, comprehensive overview about the molecular biology of genetic engineering, a presentation of many of the ethical issues now under discussion by the international scientific community, world govenmental agencies and concerned laymen about the complex and sensitive ethical issues is provided. A report about a case history of investigators in the United States who disregarded current restrictions emphasized the concern of the scientific community as well as the governmental agencies in maintaining stepwise, careful approach to the introduction of the new, molecular methodologies. The continued maintenance of many of these restrictions, suggested by some ethicists, even after the threat of uncontrolled biological disorder as a result of these new procedures was found to be erroneous is discussed and challenged.  相似文献   

9.
  总被引:4,自引:2,他引:4  
The genetic basis of species differences provides insight into the mode and tempo of phenotypic divergence. We investigate the genetic basis of floral differences between two closely related plant taxa with highly divergent mating systems, Mimulus guttatus (large-flowered outcrosser) and M. nasutus (small-flowered selfer). We had previously constructed a framework genetic linkage map of the hybrid genome containing 174 markers spanning approximately 1800 cM on 14 linkage groups. In this study, we analyze the genetics of 16 floral, reproductive, and vegetative characters measured in a large segregating M. nasutus x M. guttatus F2 population (N = 526) and in replicates of the parental lines and F1 hybrids. Phenotypic analyses reveal strong genetic correlations among floral traits and epistatic breakdown of male and female fertility traits in the F2 hybrids. We use multitrait composite interval mapping to jointly locate and characterize quantitative trait loci (QTLs) underlying interspecific differences in seven floral traits. We identified 24 floral QTLs, most of which affected multiple traits. The large number of QTLs affecting each trait (mean = 13, range = 11-15) indicates a strikingly polygenic basis for floral divergence in this system. In general, QTL effects are small relative to both interspecific differences and environmental variation within genotypes, ruling out QTLs of major effect as contributors to floral divergence between M. guttatus and M. nasutus. QTLs show no pattern of directional dominance. Floral characters associated with pollinator attraction (corolla width) and self-pollen deposition (stigma-anther distance) share several pleiotropic or linked QTLs, but unshared QTLs may have allowed selfing to evolve independently from flower size. We discuss the polygenic nature of divergence between M. nasutus and M. guttatus in light of theoretical work on the evolution of selfing, genetics of adaptation, and maintenance of variation within populations.  相似文献   

10.
11.
    
Early generations of hybrids can express both genetic incompatibilities and phenotypic novelty. Insights into whether these conflicting interactions between intrinsic and extrinsic selection persist after a few generations of recombination require experimental studies. To address this question, we use interpopulation crosses and recombinant inbred lines (RILs) of the copepod Tigriopus californicus, and focus on two traits that are relevant for the diversification of this species: survivorship during development and tolerance to thermal stress. Experimental crosses between two population pairs show that most RILs between two heat‐tolerant populations show enhanced tolerance to temperatures that are lethal to the respective parentals, whereas RILs between a heat‐tolerant and a heat‐sensitive population are intermediate. Although interpopulation crosses are affected by intrinsic selection at early generational hybrids, most of the sampled F9 RILs have recovered fitness to the level of their parentals. Together, these results suggest that a few generations of recombination allows for an independent segregation of the genes underlying thermal tolerance and cytonuclear incompatibilities, permitting certain recombinant lineages to survive in niches previously unused by parental taxa (i.e., warmer thermal environments) without incurring intrinsic selection.  相似文献   

12.
13.
    
Adaptive radiation is usually thought to be associated with speciation, but the evolution of intraspecific polymorphisms without speciation is also possible. The radiation of cichlid fish in Lake Victoria (LV) is perhaps the most impressive example of a recent rapid adaptive radiation, with 600+ very young species. Key questions about its origin remain poorly characterized, such as the importance of speciation versus polymorphism, whether species persist on evolutionary time scales, and if speciation happens more commonly in small isolated or in large connected populations. We used 320 individuals from 105 putative species from Lakes Victoria, Edward, Kivu, Albert, Nabugabo and Saka, in a radiation-wide amplified fragment length polymorphism (AFLP) genome scan to address some of these questions. We demonstrate pervasive signatures of speciation supporting the classical model of adaptive radiation associated with speciation. A positive relationship between the age of lakes and the average genomic differentiation of their species, and a significant fraction of molecular variance explained by above-species level taxonomy suggest the persistence of species on evolutionary time scales, with radiation through sequential speciation rather than a single starburst. Finally the large gene diversity retained from colonization to individual species in every radiation suggests large effective population sizes and makes speciation in small geographical isolates unlikely.  相似文献   

14.
采用PCR—SSCP方法对猪cAST基因遗传多态性进行分析。并研究基因型与肉质性状和背膘厚的相关性。根据猪CAST基因的cDNA序列(M20160)设计7对引物。结果在F1/R1。F6/R6引物对扩增的片段上发现了多态性。并对纯合子进行测序。发现317位A—G突变。2042位G—C突变。基因型在不同猪种分布的多重比较结果表明。长白猪、大白猪和杜洛克猪与沂蒙黑猪和莱芜猪比较差异极显著(P〈0.01)。固定效应模型分析结果表明,嫩度及背膘厚基因型间差异显著(P〈0.05),而pH值、温度及滴水损失基因型间差异不显著(P〉0.05)。最小二乘分析结果表明,不同猪种比较,屠宰12h和24h后肌肉温度、30min和1h后pH值及滴水损失差异显著(P〈0.05);BBCC和BBDD单元型个体与其他单元型个体比较肌肉嫩度的差异显著(P〈0.01)。AACC和AADD单元型个体与其他单元型个体比较背膘厚的差异显著(P〈0.01)。因此,推测CAST基因对猪肉品质及背膘厚存在一定的影响。将CAST基因应用于猪育种过程中的标记辅助选择将可以改善猪肉品质。加快猪的育种进程。  相似文献   

15.
Ecological Genomics is an interdisciplinary field that seeks to understand the genetic and physiological basis of species interactions for evolutionary inferences. At the 7th annual Ecological Genomics Symposium, November 13–15, 2009, members of the Ecological Genomics program at Kansas State University invited 13 speakers and 56 poster presentations.  相似文献   

16.
    
The richness of biodiversity in the tropics compared to high‐latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High‐latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of “environmental harshness” and “hard selection” as eco‐evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.  相似文献   

17.
    
Species pairs of threespine stickleback, Gasterosteus aculeatus, co-exist in several lakes in the Strait of Georgia, southwestern British Columbia. One species, ‘benthics’ is robust-bodied and is morphologically and behaviourally specialized for benthivory. The other species, ‘limnetics’ is specialized for planktivory in open-water habitats of the lakes. We examined mitochondrial DNA restriction site variation in benthic and limnetic sticklebacks as well as in solitary freshwater, anadromous (sea-run), and marine populations to test: (i) if benthic and limnetic pairs have evolved only once or multiple times (parallel evolution) and (ii) if the species have evolved sympatrically, or allopatrically from ‘double invasions’ of lakes by ancestral anadromous/marine sticklebacks. Stickleback mtDNA comprised a single clade with a low (mean = 0.40%) degree of sequence divergence among the 77 haplotypes resolved. Most nucleotide diversity (97%) was found within (rather than among) populations of anadromous/marine sticklebacks whereas most diversity (77%) was found among populations in freshwater sticklebacks. Significant differences in haplotype frequencies were found between benthics and limnetics in three of the four species pair lakes examined, but in all cases the pairs within lakes were characterized by unique assemblages of closely related haplotypes. Hierarchical clustering of divergence estimates suggested that comparable species from different lakes have originated independently in all lakes because in no case did comparable species from different lakes cluster together. Divergent species within lakes tended to be more closely related to one another than to species in other lakes and there were two cases were benthics and limnetics within a particular lake were monophyletic. In two of the four two-species lakes, limnetics were less divergent from putative ancestral anadromous/marine stickleback as predicted by the double invasion hypothesis, but in the two other lakes benthics were less divergent. Our data argue strongly that the species pairs have evolved independently in each lake were they now co-exist. Further, in two lakes our data are consistent with the species having evolved by sympatric divergence, but allopatric divergence followed by introgression of mtDNA that has obscured ancestral relationships cannot be discounted completely. Finally, despite remaining uncertainty about the geography of speciation, the species appear to have evolved in the face of gene flow arguing that natural selection acting on trophic ecology has been a major component of ecological speciation in sticklebacks.  相似文献   

18.
19.
The importance of contingency versus predictability in evolution has been a long-standing issue, particularly the interaction between genetic background, founder effects, and selection. Here we address experimentally the effects of genetic background and founder events on the repeatability of laboratory adaptation in Drosophila subobscura populations for several functional traits. We found disparate starting points for adaptation among laboratory populations derived from independently sampled wild populations for all traits. With respect to the subsequent evolutionary rate during laboratory adaptation, starvation resistance varied considerably among foundations such that the outcome of laboratory evolution is rather unpredictable for this particular trait, even in direction. In contrast, the laboratory evolution of traits closely related to fitness was less contingent on the circumstances of foundation. These findings suggest that the initial laboratory evolution of weakly selected characters may be unpredictable, even when the key adaptations under evolutionary domestication are predictable with respect to their trajectories.  相似文献   

20.
Although sympatric character divergence between closely related species has been described in a wide variety of taxa, the evolutionary processes responsible for generating these patterns are difficult to identify. One hypothesis that can explain sympatric differences is ecological character displacement: the sympatric origin of morphologically divergent phenotypes in response to selection caused by interspecific competition. Alternatively, populations may adapt to different conditions in allopatry, with sympatric distributions evolving through selective colonization and proliferation of ecologically compatible phenotypes. In this study, I characterize geographic variation within two sibling species of rocky-shore gastropods that have partially overlapping distributions in central California. In sympatry, both Nucella emarginata and N. ostrina show significant differences in shell shape and shell ornamentation that together suggest that where the two species co-exist, divergent phenotypes arose as an evolutionary consequence of competition. To examine the evolutionary origins of divergent characters in sympatry, I used a comparative method based on spatial autocorrelation to remove the portion of the phenotypic variance among populations that is explained by genetic distance (using mitochondrial DNA sequences and allozyme frequency data). Because the remaining portion of the phenotypic variance represents the independent divergence of individual populations, a significant sympatric difference in the corrected dataset provides evidence of true character displacement: significant sympatric character evolution that is independent of population history. After removal of genetic distance effects in Nucella, shell shape differences remain statistically significant in N. emarginata, providing evidence of significant sympatric character divergence. However, for external shell ornamentation in both species and shell shape in N. ostrina, the significance of sympatric differences is lost in the corrected dataset, indicating that colonization events and gene flow have played important roles in the evolutionary history of character divergence in sympatry. Although the absence of a widely dispersing planktonic larva in the life cycle of Nucella will promote local adaptation, the results here indicate that once advantageous traits arise, demographic processes, such as recurrent gene flow between established populations and extinction and recolonization, are important factors contributing to the geographic pattern of sympatric character divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号