首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal, dominantly inherited neurodegenerative disease caused by an unstable CAG trinucleotide repeat expansion in the ataxin-1 gene located on chromosome 6p22-p23. The expanded CAG repeat is unstable during transmission, and a variation in the CAG repeat length has been found in different tissues, including sperm samples from affected males. In order further to examine the mitotic and meiotic instability of the (CAG)n stretch we have performed single sperm and low-copy genome analysis in SCA1 patients and asymptomatic carriers. A pronounced variation in the size of the expanded allele was found in sperm cells and peripheral blood leucocytes, with a higher degree of instability seen in the sperm cells, where an allele with 50 repeat units was contracted in 11.8%, further expanded in 63.5% and unchanged in 24.6% of the single sperm analysed. We found a low instability of the normal alleles; the normal alleles from the individuals carrying a CAG repeat expansion were significantly more unstable than the normal alleles from the control individuals (P<0.001), indicating an interallelic interaction between the expanded and the normal alleles. Received: 8 June 1998 / Accepted: 10 September 1998  相似文献   

2.
The autosomal dominant late onset spinocerebellar ataxias (SCAs) are genetically heterogeneous. Three genes, SCA1 on 6p, SCA2 on 12q and MJD1 on 14q, have been isolated for SCA1, SCA2 and Machado-Joseph disease (MJD), respectively. In these three autosomal dominant disorders the mutation is an expanded CAG repeat. Evidence for heterogeneity in families not linked to the SCA1, SCA2 and MJD loci is provided by the mapping of SCA loci to chromosomes 16q, 11cen and 3p. A total of 14 South African kindreds and 22 sporadic individuals with SCA were investigated for the expanded SCA1 and MJD repeats. None of the families nor the sporadic individuals showed expansion of the MJD repeat. Expanded SCA1 and CAG repeats were found to cosegregate with the disorder in six of the families tested and were also observed in one sporadic individual with a negative family history of SCA. The use of the microsatellite markers D6S260, D6S89 and D6S274 provided evidence that the expanded SCA1 repeats segregated with three distinct haplotypes in the six families. Use of the highly polymorphic tightly linked microsatellite markers is still important as this stage, particularly where this coincides with the possibility of a homozygous genotype with the trinucleotide repeat marker. Importantly, our molecular findings indicate: (1) an absence of MJD expanded repeats underlying SCA; (2) the major disease in this group is due to mutations in the SCA1 gene; and (3) the familial disorder in the majority population group (i.e. mixed ancestry) in the Western Cape region of South Africa is most likely to be the result of two distinct founder events. Received: 4 November 1996 / Accepted: 6 February 1997  相似文献   

3.
To identify various subtypes of spinocerebellar ataxias (SCAs) among 57 unrelated individuals clinically diagnosed as ataxia patients we analysed the SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci for expansion of CAG repeats. We detected CAG repeat expansion in 6 patients (10.5%) at the SCA1 locus. Ten of the 57 patients (17.5%) had CAG repeat expansion at the SCA2 locus, while four had CAG expansion at the SCA3/MJD locus (7%). At the SCA6 locus there was a single patient (1.8%) with 21 CAG repeats. We have not detected any patient with expansion in the SCA7 and DRPLA loci. To test whether the frequencies of the large normal alleles in SCA1, SCA2 and SCA6 loci can reflect some light on prevalence of the subtypes of SCAs we studied the CAG repeat variation in these loci in nine ethnic sub-populations of eastern India from which the patients originated. We report here that the frequency of large normal alleles (>31 CAG repeats) in SCA1 locus to be 0.211 of 394 chromosomes studied. We also report that the frequency of large normal alleles (>22 CAG repeats) at the SCA2 locus is 0.038 while at the SCA6 locus frequency of large normal alleles (>13 repeats) is 0.032. We discussed our data in light of the distribution of normal alleles and prevalence of SCAs in the Japanese and white populations.  相似文献   

4.
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia that has been described primarily in families of Azorean or Portuguese descent. MJD and chromosome 6p-linked spinocerebellar ataxia (SCA1) are difficult to differentiate clinically, and it has been suggested that they may be allelic variants of the same disorder. We have tested MJD families for linkage to six DNA sequence polymorphisms located on chromosome 6p, including the highly informative dinucleotide repeat, D6S89. Seventeen centimorgans telomeric to and 41 cM centromeric to D6S89, a region that includes the SCA1 locus reported to be within 3 cM of D6S89, have been excluded. These data provide conclusive evidence that MJD and SCA1 are nonallelic.  相似文献   

5.
6.
Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene. Received: 6 January 1999 / Accepted: 18 March 1999  相似文献   

7.
Autosomal dominant cerebellar ataxia type III (ADCA III) is a relatively benign, late-onset, slowly progressive neurological disorder characterized by an uncomplicated cerebellar syndrome. Three loci have been identified: a moderately expanded CAG trinucleotide repeat in the SCA 6 gene, the SCA 5 locus on chromosome 11, and a third locus on chromosome 22 (SCA 10). We have identified two British families in which affected individuals do not have the SCA 6 expansion and in which the disease is not linked to SCA 5 or SCA 10. Both families exhibit the typical phenotype of ADCA III. Using a genomewide searching strategy in one of these families, we have linked the disease phenotype to marker D15S1039. Construction of haplotypes has defined a 7.6-cM interval between the flanking markers D15S146 and D15S1016, thereby assigning another ADCA III locus to the proximal long-arm of chromosome 15 (SCA 11). We excluded linkage of the disease phenotype to this region in the second family. These results indicate the presence of two additional ADCA III loci and more clearly define the genetic heterogeneity of ADCA III.  相似文献   

8.
Schizophrenia is a common polygenic disease in distinct populations, while spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disorder. Both diseases involve psychotic symptoms. SCA17 is caused by an expanded polyglutamine tract in the TATA box-binding protein ( TBP ) gene. In the present study, we investigated the association between schizophrenia and CAG repeat length in common TBP alleles with fewer than 42 CAG repeats in a Japanese population (326 patients with schizophrenia and 116 healthy controls). We found that higher frequency of alleles with greater than 35 CAG repeats in patients with schizophrenia compared with that in controls ( p = 0.042). We also examined the correlation between CAG repeats length and age at onset of schizophrenia. We observed a negative correlation between the number of CAG repeats in the chromosome with longer CAG repeats out of two chromosomes and age at onset of schizophrenia ( p = 0.020). We further provided evidence that TBP genotypes with greater than 35 CAG repeats, which were enriched in patients with schizophrenia, were significantly associated with hypoactivation of the prefrontal cortex measured by near-infrared spectroscopy during the tower of Hanoi, a task of executive function (right PFC; p = 0.015, left PFC; p = 0.010). These findings suggest possible associations of the genetic variations of the TBP gene with risk for schizophrenia, age at onset and prefrontal function.  相似文献   

9.
BACKGROUND: Several neurological disorders have recently been explained through the discovery of expanded DNA repeat sequences. Among these is Machado-Joseph disease, one of the most common spinocerebellar ataxias (MJD/SCA3), caused by a CAG repeat expansion on chromosome 14. A useful way of detecting repeat sequence mutations is offered by the repeat expansion detection method (RED), in which a thermostable ligase is used to detect repeat expansions directly from genomic DNA. We have used RED to detect CAG expansions in families with either MJD/SCA3 or with previously uncharacterized spinocerebellar ataxia (SCA). MATERIALS AND METHODS: Five MJD/SCA3 families and one SCA family where linkage to SCA1-5 had been excluded were analyzed by RED and polymerase chain reaction (PCR). RESULTS: An expansion represented by RED products of 180-270 bp segregated with MJD/SCA3 (p < 0.00001) in five families (n = 60) and PCR products corresponding to 66-80 repeat copies were observed in all affected individuals. We also detected a 210-bp RED product segregating with disease (p < 0.01) in a non-SCA1-5 family (n = 16), suggesting involvement of a CAG expansion in the pathophysiology. PCR analysis subsequently revealed an elongated MJD/SCA3 allele in all affected family members. CONCLUSIONS: RED products detected in Machado-Joseph disease families correlated with elongated PCR products at the MJD/SCA3 locus. We demonstrate the added usefulness of RED in detecting repeat expansions in disorders where linkage is complicated by phenotyping problems in gradually developing adult-onset disorders, as in the non-SCA1-5 family examined. The RED method is informative without any knowledge of flanking sequences. This is particularly useful when studying diseases where the mutated gene is unknown. We conclude that RED is a reliable method for analyzing expanded repeat sequences in the genome.  相似文献   

10.
11.
We studied three large kindreds with the HLA-linked form of spinocerebellar ataxia (SCA1) in order to localize the SCA1 locus on the short arm of chromosome 6 (6p). Two loci containing highly informative dinucleotide repeat sequences were used for linkage analysis. These two loci are D6S89, which is telomeric to the HLA region, and T complex-associated testes-expressed 1 (TCTE1), centromeric to HLA. Pairwise linkage analysis of SCA1 and D6S89 revealed a maximum lod score of 5.86 in the Houston SCA1 (HSCA1) kindred and of 8.08 in the Calabrian SCA1 (SCA1) kindreds, at recombination fractions of .050 and .022, respectively. A maximum pairwise lod score of 4.54 at a recombination frequency of .100 was obtained for SCA1 and TCTE1 in the HSCA1 kindred. No evidence for linkage was detected between TCTE1 and SCA1 in the CSCA1 kindreds. Multilocus linkage analysis of SCA1, HLA, and D6S89 in all three kindreds provided strong evidence for localization of the SCA1 locus telomeric to the HLA regions. However, multilocus linkage analysis of SCA1, HLA, and TCTE1 with HSCA1 family genotypes indicated the possibility of a location of the SCA1 locus centromeric to HLA. An analysis of HSCA1 recombinants in this region of chromosome 6 revealed relatively high recombination frequencies between HLA and each of the other two markers and relatively low frequencies between the latter and SCA1, predicting that the SCA1 locus would tend to segregate away from HLA together with D6S89 or TCTE1, as found with the three-point linkage analyses for this family.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.

Background

Expansion of a CAG repeat in the coding region of exon 1 in the ATXN2 gene located in human chromosome 12q24.1 causes the neurodegenerative disease spinocerebellar ataxia type 2 (SCA2). In contrast to other polyglutamine (polyQ) disorders, the SCA2 repeat is not highly polymorphic in central European (CEU) controls with Q22 representing 90% of alleles, and Q23 contributing between 5–7% of alleles. Recently, the ATXN2 CAG repeat has been identified as a target of adaptive selection in the CEU population. Mouse lines deficient for atxn2 develop marked hyperphagia and obesity raising the possibility that loss-of-function mutations in the ATXN2 gene may be related to energy balance in humans. Some linkage studies of obesity related phenotypes such as antipsychotic induced weight gain have reported significant lod scores on chromosome 12q24. We tested the hypothesis that rare loss-of-function ATXN2 variants cause obesity analogous to rare mutations in the leptin, leptin receptor and MC4R genes.

Methodology/Principal Findings

We sequenced the coding region of ATXN2 including intron-exon boundaries in 92 severely obese children with a body mass index (BMI) >3.2 standard deviations above age- and gender-adjusted means. We confirmed five previously identified single nucleotide polymorphisms (SNPs) and three new SNPs resulting in two synonymous substitutions and one intronic polymorphism. Alleles encoding >Q22 were overrepresented in our sample of obese children and contributed 15% of alleles in children identified by their parents as white. SNP rs695872 closely flanking the CAG repeat showed a greatly increased frequency of C/C homozygotes and G/C heterozygotes compared with reported frequencies in the CEU population.

Conclusions/Significance

Although we did not identify variants leading to novel amino acid substitutions, nonsense or frameshift mutations, this study warrants further examination of variation in the ATXN2 gene in obesity and related phenotypes in a larger case-control study with emphasis on rs695872 and CAG repeat structure.  相似文献   

13.
脊髓小脑共济失调第7型的临床特征及基因突变研究   总被引:1,自引:0,他引:1  
殷鑫浈  张宝荣  吴鼎文  田均  张灏 《遗传》2007,29(6):688-692
对一脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)家系的患者进行临床特征及相关基因突变研究。对该家系进行详细的病史采集, 并对患者行视力、眼底血管造影、眼底拍照、视觉诱发电位、视网膜电图以及头颅MRI等辅助检查; 采用聚合酶链反应分别扩增SCA1、SCA2、SCA3、SCA6、SCA7、SCA17及DRPLA基因的CAG重复序列, 用8%变性聚丙烯酰胺凝胶电泳及直接测序进行突变分析。结果2名患者主要表现为小脑性共济失调、视力下降、眼底视网膜色素变性、小脑和脑干萎缩; 并存在SCA7基因的突变, 而未发现SCA1、SCA2、SCA3、SCA6、SCA17及DRPLA基因突变。说明该家系为SCA7突变家系, SCA7基因中CAG三核苷酸重复拷贝数的异常扩增是其致病原因。  相似文献   

14.
Schizophrenia is a common neuropsychiatric disorder of uncertain etiology that is believed to result from the interaction of environmental factors and multiple genes. To identify new genes predisposing to schizophrenia, numerous groups have focused on CAG-repeat-containing genes. We previously reported a CAG repeat polymorphism that was shown to be associated with both the severity of the phenotype and the response to medication in schizophrenic patients. In this article, we now report the genomic structure of this gene, the retinoic acid inducible-1 gene (RAI1), and present its characterization. This gene, located on chromosome 17p11.2, comprises six exons coding for a 7.6-kb mRNA. The RAI1 gene is highly homologous to its mouse counterpart and it is expressed at high levels mainly in neuronal tissues.  相似文献   

15.
Larger CAG/CTG trinucleotide-repeat tracts in individuals affected with schizophrenia (SCZ) and bipolar affective disorder (BPAD) in comparison with control individuals have previously been reported, implying a possible etiological role for trinucleotide repeats in these diseases. Two unstable CAG/CTG repeats, SEF2-1B and ERDA1, have recently been cloned, and studies indicate that the majority of individuals with large repeats as detected by repeat-expansion detection (RED) have large repeat alleles at these loci. These repeats do not show association of large alleles with either BPAD or SCZ. Using RED, we have identified a BPAD individual with a very large CAG/CTG repeat that is not due to expansion at SEF2-1B or ERDA1. From this individual's DNA, we have cloned a highly polymorphic trinucleotide repeat consisting of (CTA)n (CTG)n, which is very long ( approximately 1,800 bp) in this patient. The repeat region localizes to chromosome 13q21, within 1.2 cM of fragile site FRA13C. Repeat alleles in our sample were unstable in 13 (5.6%) of 231 meioses. Large alleles (>100 repeats) were observed in 14 (1. 25%) of 1,120 patients with psychosis, borderline personality disorder, or juvenile-onset depression and in 5 (.7%) of 710 healthy controls. Very large alleles were also detected for Centre d'Etude Polymorphisme Humaine (CEPH) reference family 1334. This triplet expansion has recently been reported to be the cause of spinocerebellar ataxia type 8 (SCA8); however, none of our large alleles above the disease threshold occurred in individuals either affected by SCA or with known family history of SCA. The high frequency of large alleles at this locus is inconsistent with the much rarer occurrence of SCA8. Thus, it seems unlikely that expansion alone causes SCA8; other genetic mechanisms may be necessary to explain SCA8 etiology.  相似文献   

16.
Avirulence of Magnaporthe grisea isolate CHL346 on rice cultivar GA25 was studied with 242 ascospore progenies derived from the cross CHL346 × CHL42. Segregation analysis of the avirulence in the progeny population was in agreement with the existence of a single avirulence (Avr) gene, designated as AvrPi15. For mapping the Avr gene, we developed a total of 121 microsatellite DNA markers [simple sequence repeat (SSR)], which evenly distributed in the whole-genome of M. grisea through bioinformatics analysis (BIA) using the publicly available sequence. Linkage analysis of the AvrPi15 gene with these SSR markers showed that six markers on chromosome 6, MS6-1, MS6-2, MS6-3, MS6-7, MS6-8 and MS6-10, were linked to the AvrPi15 locus. To further define the chromosomal location of the AvrPi15 locus, two additional markers, MS6-17 and STS6-6, which were developed based on the sequences of telomeric region 11 (TEL11), were subjected to linkage analysis. The results showed that MS6-17 and STS6-6 were associated with the locus by 3.3 and 0.8 cM, respectively. To finely map the Avr gene, two additional candidate avirulence gene (CAG) markers, CAG6-1 and CAG6-2, were developed based on the gene annotation of the sequence of TEL 11. Linkage analysis of the Avr gene with these two markers revealed that both of them completely cosegregated with the AvrPi15 locus. Finally, this locus was physically mapped into ∼ 7.2-kb interval of the TEL11 by BIA using these sequence-ready markers. This is the key step toward positional cloning of the AvrPi15 gene.  相似文献   

17.
18.
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders that are clinically and genetically heterogeneous. We report here a genetic linkage study, with five chromosome 12q markers, of three Martinican families with ADCA type I, for which the spinocerebellar ataxia 1 (SCA1) locus was excluded. Linkage to the SCA2 locus was demonstrated with a maximal lod score of 6.64 at = 0.00 with marker D12S354. Recombinational events observed by haplotype reconstruction demonstrated that the SCA2 locus is located in an approximately 7-cM interval flanked by D 12S 105 and D12S79. Using thez max-l method, multipoint analysis further reduced the candidate interval for SCA2 to a region of 5 cM. Two families shared a common haplotype at loci spanning 7 cM, which suggests a founder effect, whereas a different haplotype segregated with the disease in the third family. Finally, a mean anticipation of 12 ± 14 years was found in parent-child couples, with no parental sex effect, suggesting that the disease might be caused by an expanded and unstable triplet repeat.  相似文献   

19.
This study addresses the question whether the different forms of autosomal dominant cerebellar ataxia (ADCA) are related to different ethnic/geographical regions in Europe. One mutation in families originating from Holland, Prussia and Italy has previously been localized to chromosome 6p (SCA1 locus), whereas the mutation in families of Iberic origin has been excluded from chromosome 6p. In a Danish five-generation pedigree with ADCA and in which previous HLA-serotyping had shown inconclusive linkage results, the present study shows unequivocal exclusion from the SCA1 locus, firstly through the use of the new, highly informative microsatellites D6S89 and D6S109, which closely flank the SCA1 locus, and secondly through the manifestation of disease in four pedigree members previously scored as unaffected. Additional molecular genetic analysis of the HLA DRbeta and F13A polymorphisms also argue against a cluster of ADCA genes on chromosome 6p. Since this study demonstrates the existence of non-SCA1 families and therefore heterogeneity in the North-European population, molecular family counselling remains restricted to the few known SCA1 families.  相似文献   

20.
Highly informative dinucleotide repeat polymorphisms were identified at the T-complex-associated-testes-expressed-1 (TCTE1) locus on human chromosome 6p. Electrophoresis of single-stranded DNA on native gels facilitated the analysis of the dinucleotide polymorphisms. Linkage mapping positions this marker midway between the centromere and HLA with recombination fractions as follows: D6Z1-0.21-TCTE1-0.24-HLA. Two-color fluorescence in situ hybridization places TCTE1 proximal to CRIL171 (D6S19). Together, linkage and in situ hybridization indicate that the order of the loci is D6Z1-D6S4-D6S90-TCTE1-D6S19-D6S29-HLA-telomere. A sequence tagged site (STS) was established, and three yeast artificial chromosome (YAC) clones were identified for the TCTE1 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号