首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Budding yeast grow asymmetrically by the polarized delivery of proteins and lipids to specific sites on the plasma membrane. This requires the coordinated polarization of the actin cytoskeleton and the secretory apparatus. We identified Rho3 on the basis of its genetic interactions with several late-acting secretory genes. Mutational analysis of the Rho3 effector domain reveals three distinct functions in cell polarity: regulation of actin polarity, transport of exocytic vesicles from the mother cell to the bud, and docking and fusion of vesicles with the plasma membrane. We provide evidence that the vesicle delivery function of Rho3 is mediated by the unconventional myosin Myo2 and that the docking and fusion function is mediated by the exocyst component Exo70. These data suggest that Rho3 acts as a key regulator of cell polarity and exocytosis, coordinating several distinct events for delivery of proteins to specific sites on the cell surface.  相似文献   

2.
The Rho GTPase family and their effectors are key regulators involved in many eukaryotic cell functions related to actin organization and polarity establishment. Schizosaccharomyces pombe Rho1p is essential, directly activates the (1,3)-beta-d-glucan synthase, and participates in regulation of cell wall growth and morphogenesis. Here we describe the characterization of the fission yeast Rho5p GTPase, highly homologous to Rho1p, sharing 86% identity and 95% similarity. Overexpression of the hyperactive allele rho5-G15V causes a morphological effect similar to that of rho1-G15V, but the penetrance is significantly lower, and overexpression of the dominant-negative allele rho5-T20N causes lysis like that of rho1-T20N. Importantly, overexpression of rho5(+) but no other rho genes is able to rescue the lethality of rho1Delta cells. Shutoff experiments indicated that Rho5p can replace Rho1p, but it is not as effective in maintaining cell wall integrity or actin organization. rho5(+) expression is hardly detected during log-phase growth but is induced under nutritional starvation conditions. rho5Delta cells are viable and do not display any defects during logarithmic growth. However, when rho1(+) expression is repressed during stationary phase, rho5Delta cells display reduced viability. Ascospores lacking Rho5p are less resistant to heat or lytic enzymes than wild-type spores. Moreover, h(90) mutant strains carrying the hyperactive rho5-G15V or the dominant-negative rho5-T20N alleles display severe ascospore formation defects. These results suggest that Rho5p functions in a way similar to, but less efficient than, Rho1p, plays a nonessential role during stationary phase, and participates in the spore wall formation.  相似文献   

3.
Recent studies reveal that posttranslational modifications on chromatin proteins, especially histones, organize genomic DNA and mediate various cellular responses to environmental influences. Quantitative mass spectrometric analysis is a powerful approach to reveal these dynamic events on chromatin in a systematic manner. Here, the effects of arsenic exposure on histone epigenetic state were investigated in human UROtsa cells, and a reduction in acetylation level on several histone H3 and H4 lysine residues was detected. Furthermore, MYST1 was shown to be the major histone acetyltransferase for H4 Lys16 and protect UROtsa cells from arsenic toxicity.  相似文献   

4.
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a fast and furious machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.  相似文献   

5.
In vivo time-lapse microscopy reveals that the number of peroxisomes in Saccharomyces cerevisiae cells is fairly constant and that a subset of the organelles are targeted and segregated to the bud in a highly ordered, vectorial process. The dynamin-like protein Vps1p controls the number of peroxisomes, since in a vps1Delta mutant only one or two giant peroxisomes remain. Analogous to the function of other dynamin-related proteins, Vps1p may be involved in a membrane fission event that is required for the regulation of peroxisome abundance. We found that efficient segregation of peroxisomes from mother to bud is dependent on the actin cytoskeleton, and active movement of peroxisomes along actin filaments is driven by the class V myosin motor protein, Myo2p: (a) peroxisomal dynamics always paralleled the polarity of the actin cytoskeleton, (b) double labeling of peroxisomes and actin cables revealed a close association between both, (c) depolymerization of the actin cytoskeleton abolished all peroxisomal movements, and (d) in cells containing thermosensitive alleles of MYO2, all peroxisome movement immediately stopped at the nonpermissive temperature. In addition, time-lapse videos showing peroxisome movement in wild-type and vps1Delta cells suggest the existence of various levels of control involved in the partitioning of peroxisomes.  相似文献   

6.
Rac1 is an intracellular signal transducer regulating a variety of cell functions. Previous studies by overexpression of dominant-negative or constitutively active mutants of Rac1 in clonal cell lines have established that Rac1 plays a key role in actin lamellipodia induction, cell-matrix adhesion, and cell anoikis. In the present studies, we have examined the cellular behaviors of Rac1 gene-targeted primary mouse embryonic fibroblasts (MEFs) after Cre recombinase-mediated deletion of Rac1 gene. Rac1-null MEFs became contracted and elongated in morphology and were defective in lamellipodia formation, cell spreading, cell-fibronectin adhesion, and focal contact formation in response to platelet-derived growth factor or serum. Unexpectedly, deletion of Rac1 also abolished actin stress fibers in the cells without detectable alteration of endogenous RhoA activity. Although the expression and/or activation status of focal adhesion complex components such as Src, FAK, and vinculin were not affected by Rac1 deletion, the number and size of adhesion plaques were significantly reduced, and the molecular complex between Src, FAK, and vinculin was dissembled in Rac1-null cells. Overexpression of an active RhoA mutant or ROK failed to rescue the stress fiber and adhesion plaque defects of the Rac1-null cells. Although Rac1 deletion caused a significant reduction in phospho-PAK1, -AKT, and -ERK under serum stimulation, reconstitution of active PAK1, but not AKT or MEK1, was able to rescue the actin cytoskeleton and adhesion phenotypes of the Rac1-deficient cells. Furthermore, Rac1 deletion led to a marked increase in spontaneous apoptosis that could be rescued by active PAK1, AKT, or MEK1 expression. Our results obtained from gene-targeted primary MEFs indicate that Rac1 is essential not only for lamellipodia induction but also for the RhoA-regulated actin stress fiber and focal adhesion complex formation and that Rac1 is involved in cell survival regulation through anoikis-dependent as well as -independent mechanisms.  相似文献   

7.
The GTPase Rho has a critical regulatory role in thymus development.   总被引:11,自引:0,他引:11       下载免费PDF全文
The present study employs a genetic approach to explore the role of Rho GTPases in murine thymic development. Inactivation of Rho function in the thymus was achieved by thymic targeting of a transgene encoding C3 transferase from Clostridium botulinum which selectively ADP-ribosylates Rho within its effector domain and thereby abolishes its biological function. Thymi lacking functional Rho isolated from C3 transgenic mice were strikingly smaller and showed a marked (90%) decrease in cellularity compared with their normal litter mates. We also observed a similar decrease in levels of peripheral T cells in C3 transgenic mice. Analysis of the maturation status of thymocytes indicated that differentiation of progenitor cells to mature T cells can occur in the absence of Rho function, and both positive and negative selection of T cells appear to be intact. However, transgenic mice that lack Rho function in the thymus show maturational, proliferative and cell survival defects during T-cell development that severely impair the generation of normal numbers of thymocytes and mature peripheral T cells. The present study thus identifies a role for Rho-dependent signalling pathways in thymocyte development. The data show that the function of Rho GTPases is critical for the proliferative expansion of thymocytes. This defines a selective role for the GTPase Rho in early thymic development as a critical integrator of proliferation and cell survival signals.  相似文献   

8.
Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.  相似文献   

9.
The precise biological role of Thy-1, a glycophosphatidyl-inositol (GPI)-linked cell surface glycoprotein in non-caveolar lipid raft microdomains, remains enigmatic. Evidence suggests that Thy-1 affects intracellular signaling through src-family protein kinases, and modulates adhesive and migratory events, such as thymocyte adhesion and neurite extension. Primary fibroblasts sorted based on presence or absence of cell surface Thy-1 display strikingly distinct morphologies and differ with respect to production of and response to cytokines and growth factors. It is unclear the extent to which Thy-1 mediates these differences. Findings reported here indicate a novel role for Thy-1 in regulating the activity of Rho GTPase, a critical regulator of cellular adhesion and cytoskeletal organization. Endogenous or heterologous Thy-1 expression promotes focal adhesion and stress fiber formation, characteristic of increased Rho GTPase activity, and inhibits migration. Immunoblotting following transfection of RFL6 fibroblasts with Thy-1 demonstrates that Thy-1 expression inhibits src-family protein tyrosine kinase (SFK) activation, resulting in decreased phosphorylation of p190 Rho GTPase-activating protein (GAP). This results in a net increase in active Rho, and increased stress fibers and focal adhesions. We therefore conclude that Thy-1 surface expression regulates fibroblast focal adhesions, cytoskeletal organization and migration by modulating the activity of p190 RhoGAP and Rho GTPase.  相似文献   

10.
Polarized growth in Saccharomyces cerevisiae is thought to occur by the transport of post-Golgi vesicles along actin cables to the daughter cell, and the subsequent fusion of the vesicles with the plasma membrane. Previously, we have shown that Msb3p and Msb4p genetically interact with Cdc42p and display a GTPase-activating protein (GAP) activity toward a number of Rab GTPases in vitro. We show here that Msb3p and Msb4p regulate exocytosis by functioning as GAPs for Sec4p in vivo. Cells lacking the GAP activity of Msb3p and Msb4p displayed secretory defects, including the accumulation of vesicles of 80-100 nm in diameter. Interestingly, the GAP activity of Msb3p and Msb4p was also required for efficient polarization of the actin patches and for the suppression of the actin-organization defects in cdc42 mutants. Using a strain defective in polarized secretion and actin-patch organization, we showed that a change in actin-patch organization could be a consequence of the fusion of mistargeted vesicles with the plasma membrane.  相似文献   

11.
Mitochondria undergo continuous cycles of homotypic fusion and fission, which play an important role in controlling organelle morphology, copy number, and mitochondrial DNA maintenance. Because mitochondria cannot be generated de novo, the motility and distribution of these organelles are essential for their inheritance by daughter cells during division. Mitochondrial Rho (Miro) GTPases are outer mitochondrial membrane proteins with two GTPase domains and two EF-hand motifs, which act as receptors to regulate mitochondrial motility and inheritance. Here we report that although all of these domains are biochemically active, only the GTPase domains are required for the mitochondrial inheritance function of Gem1p (the yeast Miro ortholog). Mutations in either of the Gem1p GTPase domains completely abrogated mitochondrial inheritance, although the mutant proteins retained half the GTPase activity of the wild-type protein. Although mitochondrial inheritance was not dependent upon Ca(2+) binding by the two EF-hands of Gem1p, a functional N-terminal EF-hand I motif was critical for stable expression of Gem1p in vivo. Our results suggest that basic features of Miro protein function are conserved from yeast to humans, despite differences in the cellular machinery mediating mitochondrial distribution in these organisms.  相似文献   

12.
Xu K  Babcock HP  Zhuang X 《Nature methods》2012,9(2):185-188
By combining astigmatism imaging with a dual-objective scheme, we improved the image resolution of stochastic optical reconstruction microscopy (STORM) and obtained <10-nm lateral resolution and <20-nm axial resolution when imaging biological specimens. Using this approach, we resolved individual actin filaments in cells and revealed three-dimensional ultrastructure of the actin cytoskeleton. We observed two vertically separated layers of actin networks with distinct structural organizations in sheet-like cell protrusions.  相似文献   

13.
In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.  相似文献   

14.
Rho1p is an essential small GTPase that plays a key role in the morphogenesis of Saccharomyces cerevisiae. We show here that the activation of Rho1p is regulated by a cyclin-dependent kinase (CDK). Rho1p is activated at the G1/S transition at the incipient-bud sites by the Cln2p (G1 cyclin) and Cdc28p (CDK) complex, in a process mediated by Tus1p, a guanine nucleotide exchange factor for Rho1p. Tus1p interacts physically with Cln2p/Cdc28p and is phosphorylated in a Cln2p/Cdc28p-dependent manner. CDK phosphorylation consensus sites in Tus1p are required for both Cln2p-dependent activation of Rho1p and polarized organization of the actin cytoskeleton. We propose that Cln2p/Cdc28p-dependent phosphorylation of Tus1p is required for appropriate temporal and spatial activation of Rho1p at the G1/S transition.  相似文献   

15.
The RGD1 gene, identified during sequencing of the Saccharomyces cerevisiae genome, encodes a protein with a Rho-GTPase activating protein (GAP) domain at the carboxy-terminal end. The Rgd1 protein showed two-hybrid interactions with the activated forms of Rho2p, Rho3p and Rho4p. Using in vitro assays, we demonstrated that Rgd1p stimulated the GTPase activity of both Rho3p and Rho4p; no stimulation was observed on Rho2p. In addition, the rho3Deltargd1Delta double mutant exhibited a dramatic growth defect compared to the single mutants, suggesting that Rgd1p has a GAP activity in vivo. The present study allowed the identification of the first GAP of Rho3p and Rho4p.  相似文献   

16.
In Saccharomyces cerevisiae, clathrin is necessary for localization of trans-Golgi network (TGN) membrane proteins, a process that involves cycling of TGN proteins between the TGN and endosomes. To characterize further TGN protein localization, we applied a screen for mutations that cause severe growth defects in combination with a temperature-sensitive clathrin heavy chain. This screen yielded a mutant allele of RIC1. Cells carrying a deletion of RIC1 (ric1Delta) mislocalize TGN membrane proteins Kex2p and Vps10p to the vacuole. Delivery to the vacuole occurs in ric1Delta cells also harboring end3Delta to block endocytosis, indicative of a defect in retrieval to the TGN rather than sorting to endosomes. SYS1, originally discovered as a multicopy suppressor of defects caused by the absence of the Rab GTPase YPT6, was identified as a multicopy suppressor of ric1Delta. Further comparison of ric1Delta and ypt6Delta cells demonstrated identical phenotypes. Multicopy plasmids expressing v-SNAREs Gos1p or Ykt6p, but not other v- and t-SNAREs, partially suppressed phenotypes of ric1Delta and ypt6Delta cells. SLY1-20, a dominant activator of the cis-Golgi network t-SNARE Sed5p, also functioned as a multicopy suppressor. Because Gos1p and Ykt6p interact with Sed5p, these results raise the possibility that TGN membrane protein localization requires Ric1p- and Ypt6p-dependent retrieval to the cis-Golgi network.  相似文献   

17.
Vlachos S  Harden N 《Genetics》2011,187(2):501-512
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.  相似文献   

18.
Cdh1 is an activator of the anaphase-promoting complex/cyclosome and contributes to mitotic exit and G1 maintenance by targeting cell cycle proteins for degradation. However, Cdh1 is expressed and active in postmitotic or quiescent cells, suggesting that it has functions other than cell cycle control. Here, we found that homozygous Cdh1 gene-trapped (Cdh1GT/GT) mouse embryonic fibroblasts (MEFs) and Cdh1-depleted HeLa cells reduced stress fiber formation significantly. The GTP-bound active Rho protein was apparently decreased in the Cdh1-depleted cells. The p190 protein, a major GTPase-activating protein for Rho, accumulated both in Cdh1GT/GT MEFs and in Cdh1-knockdown HeLa cells. Cdh1 formed a physical complex with p190 and stimulated the efficient ubiquitination of p190, both in in vitro and in vivo. The motility of Cdh1-depleted HeLa cells was impaired; however, codepletion of p190 rescued the migration activity of these cells. Moreover, Cdh1GT/GT embryos exhibited phenotypes similar to those observed for Rho-associated kinase I and II knockout mice: eyelid closure delay and disruptive architecture with frequent thrombus formation in the placental labyrinth layer, respectively. Furthermore, the p190 protein accumulated in the Cdh1GT/GT embryonic tissues. Our data revealed a novel function for Cdh1 as a regulator of Rho and provided insights into the role of Cdh1 in cell cytoskeleton organization and cell motility.The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit complex that functions as an E3 ubiquitin ligase for various cell cycle proteins (19, 46). Proteins ubiquitinated by APC/C are recognized and degraded by the 26S proteasome to ensure proper cell cycle progression. APC/C activity is strictly dependent on coactivator proteins that interact with APC/C during specific phases of the cell cycle. Cdh1 (also known as Fzr, Hct1, or Srw) is one of the coactivators that maintain APC/C activity from anaphase of mitosis until the end of the G1 phase of the cell cycle (43, 53).The role of Cdh1 (APC/CCdh1) on cell-cycle progression has been well studied; however, several studies have shed light into another aspect of Cdh1''s function. For example, expression of Cdh1 is not restricted to cycling cells; APC/CCdh1 is also present and active in quiescent cultured cells (9). Furthermore, immunohistochemical analysis has shown that Cdh1 is expressed in a wide variety of tissues that are predominantly composed of postmitotic cells, such as neurons, where APC/CCdh1 has a high cyclin B ubiquitination activity (1, 16). It has been reported that APC/CCdh1 promotes axonal growth and patterning (20) and is required for neuronal survival (1). These results highlight the importance of the APC/C activator Cdh1 in neurons. However, Cdh1 has also been shown to participate in the differentiation of tissues such as the muscle (25). Given that Cdh1 is ubiquitously expressed in organs containing quiescent cells, there might be additional roles for Cdh1.Rho GTPase proteins play a central role in the regulation of cell shape, polarity, and locomotion via their effects on actin polymerization, actomyosin contractility, cell adhesion, and microtubule dynamics (13). Small G proteins, which include Rho, act as molecular switches that cycle between an inactive GDP-bound state and an active GTP-bound state. The latter form of Rho proteins interacts with and activates downstream effector proteins. The activity of Rho GTPases is controlled by three class of key regulators: (i) guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP to GTP for their activation (41); (ii) GTPase activating proteins (GAPs), which stimulate the intrinsic GTPase activity for their inactivation (8); and (iii) guanine nucleotide dissociation inhibitors (GDIs), which interact with GDP-bound Rho GTPases and sequester them in the cytoplasm to inhibit the exchange of GDP to GTP (33). In addition to these canonical regulations, recent studies indicate that the ubiquitination pathway is also involved in the modulation of Rho GTPase activity. Smurf1, which is a HECT domain E3 ubiquitin ligase, controls the local levels of RhoA at the cell periphery by targeting it for degradation (40, 55). Therefore, the regulatory mechanisms of Rho GTPase activity seem to be more complex than previously thought. It thus remains to be clarified whether other ubiquitin ligases also play a role in Rho signaling by targeting its components directly or indirectly.In this study, we found that the APC/C activator Cdh1 modulated actin organization. Mouse embryonic fibroblasts (MEFs) derived from a homozygous Cdh1 gene-trapped ([GT] Cdh1GT/GT) mouse model displayed decreased numbers of stress fibers and focal adhesions (FAs). Consistent with these phenotypes, Rho activity was apparently reduced in Cdh1-deficient cells. Cdh1 regulated Rho activity via the targeting of p190 for degradation. We also found that Cdh1 knockdown cells showed decreased motility, which was rescued by codepletion of p190. Furthermore, phenotypic similarities between Cdh1GT/GT embryos and ROCK (also known as Rho-kinase, which is the important Rho downstream effector of actin cytoskeleton formation) knockout (KO) mice (44, 49) support our notion that Cdh1 plays a role in the Rho/ROCK signaling axis. Collectively, our findings suggest an alternative role for Cdh1 other than cell cycle regulation and reveal Cdh1 as a new regulator of Rho.  相似文献   

19.
Elena Kurbatova 《FEBS letters》2009,583(19):3175-3180
Emp24 is a member of the p24 protein family, which was initially localized to the endoplasmic reticulum, Golgi and COP vesicles, but has recently shown to be associated with Saccharomyces cerevisiae peroxisomes as well. Using cell fractionation and electron- and fluorescence microscopy, we show that in the yeast Hansenula polymorpha, Emp24 also associates with peroxisomes. In addition, we show that peroxisome numbers are strongly decreased in H. polymorpha cells lacking two proteins of the p24 complex, Emp24 and Erp3. Detailed fluorescence microscopy analyses suggest that emp24.erp3 cells are disturbed in peroxisome fission and inheritance.  相似文献   

20.
Hydrogen-deuterium exchange measurements represent a powerful approach to investigating changes in conformation and conformational mobility in proteins. Here, we examine p38α MAP kinase (MAPK) by hydrogen-exchange (HX) mass spectrometry to determine whether changes in conformational mobility may be induced by kinase phosphorylation and activation. Factors influencing sequence coverage in the HX mass spectrometry experiment, which show that varying sampling depths, instruments, and peptide search strategies yield the highest coverage of exchangeable amides, are examined. Patterns of regional deuteration in p38α are consistent with tertiary structure and similar to deuteration patterns previously determined for extracellular-signal-regulated kinase (ERK) 2, indicating that MAPKs are conserved with respect to the extent of local amide HX. Activation of p38α alters HX in five regions, which are interpreted by comparing X-ray structures of unphosphorylated p38α and X-ray structures of phosphorylated p38γ. Conformational differences account for altered HX within the activation lip, the P + 1 site, and the active site. In contrast, HX alterations are ascribed to activation-induced effects on conformational mobility, within substrate-docking sites (αF-αG, β7-β8), the C-terminal core (αE), and the N-terminal core region (β4-β5, αL16, αC). Activation also decreases HX in a 3-10 helix at the C-terminal extension of p38α. Although this helix in ERK2 forms a dimerization interface that becomes protected from HX upon activation, analytical ultracentrifugation shows that this does not occur in p38α because both unphosphorylated and diphosphorylated forms are monomeric. Finally, HX patterns in monophosphorylated p38α are similar to those in unphosphorylated kinase, indicating that the major activation lip remodeling events occur only after diphosphorylation. Importantly, patterns of activation-induced HX show differences between p38α and ERK2 despite their similarities in overall deuteration, suggesting that although MAPKs are closely related with respect to primary sequence and tertiary structure, they have distinct mechanisms for dynamic control of enzyme function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号