首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insight into the magnitude of muscle forces is important in biomechanics research, for example because muscle forces are the main determinants of joint loading. Unfortunately muscle forces cannot be calculated directly and can only be measured using invasive procedures. Therefore, estimates of muscle force based on surface EMG measurements are frequently used. This review discusses the problems associated with surface EMG in muscle force estimation and the solutions that novel methodological developments provide to this problem. First, some basic aspects of muscle activity and EMG are reviewed and related to EMG amplitude estimation. The main methodological issues in EMG amplitude estimation are precision and representativeness. Lack of precision arises directly from the stochastic nature of the EMG signal as the summation of a series of randomly occurring polyphasic motor unit potentials and the resulting random constructive and destructive (phase cancellation) superimpositions. Representativeness is an issue due the structural and functional heterogeneity of muscles. Novel methods, i.e. multi-channel monopolar EMG and high-pass filtering or whitening of conventional bipolar EMG allow substantially less variable estimates of the EMG amplitude and yield better estimates of muscle force by (1) reducing effects of phase cancellation, and (2) adequate representation of the heterogeneous activity of motor units within a muscle. With such methods, highly accurate predictions of force, even of the minute force fluctuations that occur during an isometric and isotonic contraction have been achieved. For dynamic contractions, EMG-based force estimates are confounded by the effects of muscle length and contraction velocity on force producing capacity. These contractions require EMG amplitude estimates to be combined with modeling of muscle contraction dynamics to achieve valid force predictions.  相似文献   

2.
EMG monitoring in functional electrostimulation]   总被引:1,自引:0,他引:1  
When using functional electrical stimulation (FES), correct adjustment of stimulation parameters, and monitoring of the stimulated muscle is mandatory if tissue damage is to be avoided. Although several FES systems are already in regular use, a method for direct muscle monitoring is still lacking. This paper investigates the suitability of the electromyogram (EMG) for such a purpose. In six sheep, the right latissimus dorsi muscle (LDM) and the associated thoracodorsal nerve were exposed. Stimulation was effected via electrodes placed on the nerve. Three electrodes were placed in the LDM for EMG recording, and the tendon was connected to a force transducer for isometric force measurement. Stimulation was applied for one second (burst), followed by a three-second pause. The stimulation current was increased in 0.2 mA steps, starting at 0 mA and ending at 4 mA. Throughout the investigation, the EMG signal was monitored with an oscilloscope. In addition, the EMG signal and the force transducer signal were recorded for subsequent analysis. An analysis of the data of all six sheep revealed an almost linear relationship between muscle force and m-wave amplitude (magnitude of r = 0.95, p < 0.001). M-wave monitoring during EMG recording with three intramuscular electrodes is a reliable method of monitoring FES-induced muscle activity, but the absolute force cannot be measured.  相似文献   

3.
The purpose of the present investigation is to use surface interference EMG recorded by branched electrodes for assessment of muscle fatigue during sustained voluntary isometric contractions at different levels. Level-trigger averaging and turn/amplitude analysis have been applied. The conduction velocity (CV) of excitation was calculated from the time shift of the negative peaks of the averaged potentials (AvPs) derived from the EMG recorded by two electrodes placed along the muscle fibers. The recruitment of new motor units affects the negative amplitude (NA) of AvPs, the number of turns per second and the mean amplitude of turns in a different way depending on the level of sustained contractions. In contrast, the CV declined at all levels of sustained contractions and was the most appropriate parameter for the muscle fatigue assessment. There was a good correlation between CV decrease and torque reduction during sustained maximal efforts. The level-trigger averaging technique of the interference EMG recorded by surface branched electrodes is easy and non-invasive, thus being very convenient for routine application.  相似文献   

4.
This study was performed to evaluate the relative significance of changes typical for muscle fatigue on quantitative parameters obtained from turns analysis of simulated intramuscular and surface interference electromyographic (EMG) signals. Effects of reduction of firing rate of motor units (MUs) and changes of intracellular action potential (IAP) profile along active fibers were analyzed. A new analytic function was proposed to simulate changes in IAP shape at different stages of muscle fatigue. In intramuscular EMG, both the decrease in firing rate of MUs and the changes in IAP profile led to reduction in the number of turns per second (NTs) and mean turn amplitude (MTA). The development of fatigue and especially the changes in IAP profile could explain why NTs increased up to only about 50% of maximal voluntary contraction, and remained unchanged above that level of efforts or even decreased. These effects should be especially pronounced in patients with myopathy whose IAP and muscle fatigability are expected to be abnormal. In surface EMG, the MTA increased considerably with fatigue; the sensitivity of NTs to reduction in firing rate (or number of discharges) was low. Thus, the benefits of the turns analysis of surface EMG signals should be lower not only in diagnosis of myopathy but also neuropathy.  相似文献   

5.
The amplitude of the surface EMG does not reach the level achieved during a maximal voluntary contraction force at the end of a sustained, submaximal contraction, despite near-maximal levels of voluntary effort. The depression of EMG amplitude may be explained by several neural and muscular adjustments during fatiguing contractions, including decreased net neural drive to the muscle, changes in the shape of the motor unit action potentials, and EMG amplitude cancellation. The changes in these parameters for the entire motor unit pool, however, cannot be measured experimentally. The present study used a computational model to simulate the adjustments during sustained isometric contractions and thereby determine the relative importance of these factors in explaining the submaximal levels of EMG amplitude at task failure. The simulation results indicated that the amount of amplitude cancellation in the simulated EMG (~ 40%) exhibited a negligible change during the fatiguing contractions. Instead, the main determinant of the submaximal EMG amplitude at task failure was a decrease in muscle activation (number of muscle fiber action potentials), due to a reduction in the net synaptic input to motor neurons, with a lesser contribution from changes in the shape of the motor unit action potentials. Despite the association between the submaximal EMG amplitude and reduced muscle activation, the deficit in EMG amplitude at task failure was not consistently associated with the decrease in neural drive (number of motor unit action potentials) to the muscle. This indicates that the EMG amplitude cannot be used as an index of neural drive.  相似文献   

6.
Electromyography is often used to infer the pattern of productionof force by skeletal muscles. The interpretation of muscle functionfrom the electromyogram (EMG) is challenged by the fact thatfactors such as type of muscle fiber, muscle length, and musclevelocity can all influence the relationship between electricaland mechanical activity of a muscle. Simultaneous measurementsof EMG, muscle force, and fascicle length in hindlimb musclesof wild turkeys allow us to probe the quantitative link betweenforce and EMG. We examined two features of the force–EMGrelationship. First, we measured the relaxation electromechanicaldelay (r-EMD) as the time from the end of the EMG signal totime of the end of force. This delay varied with locomotor speedin the lateral gastrocnemius (LG); it was longer at slow walkingspeeds than for running. This variation in r-EMD was not explainedby differences in muscle length trajectory, as the magnitudeof r-EMD was not correlated with the velocity of shorteningof the muscle during relaxation. We speculate that the longerrelaxation times at slow walking speeds compared with runningmay reflect the longer time course of relaxation in slower musclesfibers. We also examined the relationship between magnitudeof force and EMG across a range of walking and running speeds.We analyzed the force–EMG relationship during the swingphase separately from the force–EMG relationship duringstance phase. During stance, force amplitude (average force)was linearly related to mean EMG amplitude (average EMG). Forcesduring swing phase were lower than predicted from the stancephase force–EMG relationship. The different force–EMGrelationships during the stance and swing phases may reflectthe contribution of passive structures to the development offorce, or a nonlinear force–EMG relationship at low levelsof muscle activity. Together the results suggest that any inferenceof force from EMG must be done cautiously when a broad rangeof activities is considered.  相似文献   

7.
The purpose of this study was to examine the effect of joint angle on the relationship between force and electromyogram (EMG) amplitude and median frequency, in the biceps, brachioradialis and triceps muscles. Surface EMG were measured at eight elbow angles, during isometric flexion and extension at force levels from 10% to 100% of maximum voluntary contraction (MVC). Joint angle had a significant effect on MVC force, but not on MVC EMG amplitude in all of the muscles examined. The median frequency of the biceps and triceps EMG decreased with increasing muscle length, possibly due to relative changes in electrode position or a decrease in muscle fibre diameter. The relationship between EMG amplitude and force, normalised with respect to its maximum force at each angle, did not vary with joint angle in the biceps or brachioradialis muscles over all angles, or in the triceps between 45° and 120° of flexion. These results suggest that the neural excitation level to each muscle is determined by the required percentage of available force rather than the absolute force required. It is, therefore, recommended that when using surface EMG to estimate muscle excitation, force should be normalised with respect to its maximum value at each angle.  相似文献   

8.
Capabilities of amplitude and spectral methods for information extraction from interference EMG signals were assessed through simulation and preliminary experiment. Muscle was composed of 4 types of motor units (MUs). Different hypotheses on changes in firing frequency of individual MUs, intracellular action potential (IAP) and muscle fibre propagation velocity (MFPV) during fatigue were analyzed. It was found that changes in amplitude characteristics of interference signals (root mean square, RMS, or integrated rectified value, IEMG) detected by intramuscular and surface electrodes differed. RMS and IEMG of surface detected interference signals could increase even under MU firing rate reduction and without MU synchronisation. IAP profile lengthening can affect amplitude characteristics more significantly than MU firing frequency. Thus, an increase of interference EMG amplitude is unreliable to reflect changes in the neural drive. The ratio between EMG amplitude and contraction response can hardly characterise the so-called 'neuromuscular efficiency'. The recently proposed spectral fatigue indices can be used for quantification of interference EMG signals. The indices are practically insensitive to MU firing frequency. IAP profile lengthening and decrease in MFPV enhanced the index value, while recruitment of fast fatigable MUs reduced it. Sensitivity of the indices was higher than that of indices traditionally used.  相似文献   

9.
Electromyography can be used to record activity from sets of muscles in awake, freely moving animals using implanted intramuscular electrodes. As a tool, EMG has a wide range of applications ranging from inferring neural processes to analyzing movement. The amplitude of the rectified and filtered electromyogram (EMG) can be used as an indirect measure of muscle activity. Although it is often tempting to correlate the EMG with muscle force, the fact that force varies more with different activation strategies than with EMG estimates must be taken into account. The purpose of this article is to provide the researcher wishing to introduce the technique of recording EMGs from conscious animals using intramuscular electrodes with a step-by-step guide. It includes details on the manufacture of electromyograph electrodes, recording, and analysis considerations along with a section on solving common problems. For the sake of clarity, this article focuses on using the cat as a model and on the implantation of hindlimb muscles with intramuscular wire electrodes. However, the procedures can be adapted for use on other striated muscles and species.  相似文献   

10.
This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the global level of amplitude and spectral analysis cannot be used to characterize fatigue properties of low back muscles during very low level, long duration contractions since in these cases the non-stable MU pool has a major influence on the EMG variables. These considerations clarify issues only partially investigated in past studies. The limitations indicated above are important and should be carefully discussed when presenting surface EMG results as a means for low back muscle assessment in clinical practice.  相似文献   

11.
The aim of this study was to verify if there are differences in the amplitude of signals from surface electromyography (EMG) during maximal and submaximal voluntary isometric contraction (MVC and 50% MVC, respectively) under different conditions, in our case, water and air, with and without extra protection (water-resistant tape) on the electrode. The isometric force and muscle activation of the MVC and 50% MVC of the biceps brachial muscle of nine healthy trained men were measured simultaneously, performed in water and on air, with and without protection of the EMG electrode. The multivariate analysis of variance with a post hoc Tukey test was applied to detect significant differences between the levels of muscular force. For the amplitude values of the EMG signal, the Wilcoxon signed rank test was applied to compare all experimental conditions in order to detect a significance of p < 0.05. The values of isometric force were not significantly different among conditions (MVC and 50% MVC). The results showed a significant difference among conditions in the water without extra protection compared to the conditions on air with and without extra protection and in water with extra protection. Reduced EMG amplitude was seen in water without extra protection from 37.04% to 55.81% regarding the other conditions. However, no significant difference was seen among conditions in water with extra protection in relation the conditions on air (with and without extra protection). This study suggest that it is necessary to use a water-resistant tape as an extra protection on the electrode when using EMG underwater, to avoid having a significant decrease in the EMG amplitude underwater and not to suffer interference from the water. There was no significant difference among the recordings of EMG with and without the use of protection on air; therefore, the protection does not influence the recording of EMG amplitude and isometric force on air.  相似文献   

12.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

13.
Contracting muscle generates sounds which can be recorded easily by means of a microphone. To determine if a phomomyogram (PMG) can be used to monitor muscle force, a comparison was made between simultaneous recordings of PMG and monopolar electromyogram (EMG) from the isometrically contracting biceps brachii muscle and the external flexion force. Locations of the monopolar electrode and microphone were identified in relation to the motor point. Whatever the recording site, PMG amplitude was proportional to EMG amplitude and both showed a quadratic relationship to muscle force. Changes in the PMG spectrum with force were similar to those in EMG, i.e. the mean power frequency increased up to about 30% maximal voluntary contraction and then reached a plateau. Despite a slightly higher variability, PMG was shown to be a valid index of muscular isometric force. At the same force, the amplitude of both PMG and EMG was lower in the prone than in the supine position of the hand. This result indicated a selective recording of biceps brachii muscle activity.  相似文献   

14.
Electromyographic (EMG) amplitude and mechanical tension are directly related during isometric contraction. Maximal voluntary isometric contractions are typically elicited through two different procedures; resisting a load, which is eccentric in nature, and contracting against an immovable object, which is concentric in nature. A wealth of literature exists indicating that EMG amplitude during concentric contractions is greater than that of eccentric contractions of the same magnitude. However, the effects of different methods to elicit isometric contraction on EMG amplitude have yet to be investigated. The purpose of this study was to compare EMG amplitudes under different loading configurations designed to elicit isometric muscle contraction. Twenty healthy volunteers (10 males and 10 females, age = 23 ± 2 yrs, height = 1.7 ± 0.09 m, mass = 69.9 + 16.8 kg) performed a maximal voluntary plantarflexion effort for which the vertical ground reaction force (GRFv) sampled from a force plate and surface EMG of the soleus were recorded. Participants then performed isometric plantarflexion at 20%, 30%, 40%, and 50% GRFvmax in a seated position, from a neutral ankle position, under two different counterbalanced isometric loading conditions (concentric and eccentric). For concentric loading conditions, the subject contracted against an immovable resistance to the specified %GRFv identified via visual and auditory feedback. For eccentric loading conditions, subjects contracted against an applied load placed on the distal anterior thigh that produced the specified %GRFv. This applied load had the tendency to force the ankle into dorsiflexion. Therefore, plantarflexion force, in an attempt to maintain the ankle in a neutral position, resisted lengthening of the plantarflexor musculature, thus representing eccentric loading during an isometric contraction. Mean EMG amplitude was compared across loading levels and types using a 2 (loading type: concentric, eccentric) × 4 (loading level: 20%, 30%, 40%, 50% GRFv) repeated-measures ANOVA. The main effect for loading level was significant (p = 0.007). However, the main effect for loading type, and the loading type × loading level interaction were non-significant (p > 0.05). The present findings provide evidence that isometric muscle contractions loaded in either concentric or eccentric manners elicit similar EMG amplitudes, and are therefore comparable in research settings.  相似文献   

15.
Surface electromyographic (EMG) amplitude and mean power frequency (MPF) were used to study the isometric muscular activity of the right versus the left upper trapezius muscles in 14 healthy right-handed women. The EMG activity was recorded simultaneously with force signals during a 10-15 s gradually increasing exertion of force, up to maximal force. Only one side at a time was tested. On both sides there was a significant increase in EMG amplitude (microV) during the gradually increasing force from 0% to 100% maximal voluntary contraction (MVC). The right trapezius muscle showed significantly less steep slopes for regression of EMG amplitude versus force at low force levels (0%-40% MVC) compared intra-individually with high force levels (60%-100% MVC). This was not found for the left trapezius muscle. At 40% MVC a significantly lower MPF value was found for the right trapezius muscle intra-individually compared with the left. An increase in MPF between 5% and 40% MVC was statistically significant when both sides were included in the test. The differences in EMG activity between the two sides at low force levels could be due to more slow-twitch (type I fibres) motor unit activity in the right trapezius muscles. It is suggested that this is related to right-handed activity.  相似文献   

16.
Most previously published electromyographic (EMG) studies have indicated that the temporalis muscles in humans become almost electrically quiet during incisai biting. These data have led various workers to conclude that these muscles may contribute little to the incisai bite force. The feeding behavior and comparative anatomy of the incisors and temporalis muscles of certain catarrhine primates, however, suggest that the temporalis muscle is an important and powerful contributor to the bite force during incision. One purpose of this study is to analyze the EMG activity of the masseter and temporalis muscles in both humans and macaques with the intention of focusing on the conflict between published EMG data on humans and inferences of muscle function based on the comparative anatomy and behavior of catarrhine primates. The EMG data collected from humans in the present study indicate that, in five of seven subjects, the masseter,anterior temporalis, and posterior temporalis muscles are very active during apple incision (i.e., relative to EMG activity levels during apple and almond mastication). In the other two human subjects the EMG levels of these muscles are lower during incision than during mastication, but in no instance are these muscles ever close to becoming electrically quiet. The EMG data on macaques indicate that, in all six subjects, the masseter, anterior temporalis, and posterior temporalis muscles are very active during incision. These data are in general agreement with inferences on muscle function that have been drawn from the comparative anatomy and behavior of primates, but they do not agree with previous experimental data. The reason for this disagreement is probably due to differences in the experimental procedure. In previous studies subjects simply bit isometrically on their incisors and the resulting EMG pattern was compared to the pattern associated with powerful clenching in centric occlusion. In the present study the subjects incised into actual food objects, and the resulting EMG pattern was compared to the pattern associated with mastication of various foods. It is not surprising that these two procedures result in markedly different EMG patterns, which in turn result in markedly different interpretations of jaw-muscle function. In an attempt to explain the evolution of the postorbital septum in anthropoids, it has been suggested that the anterior temporalis is more active than the masseter during incision (Cachel, 1979). The human and macaque EMG data do not support this hypothesis; during incision, the two muscles show no consistent differences in humans and the masseter appears to be in fact more active than the anterior temporalis in macaques.  相似文献   

17.
Seventeen hemiplegic patients with chronic shoulder subluxation secondary to a cerebrovascular accident (CVA) were divided into three groups, two of which were subjected to 6 weeks of therapeutic electrical stimulation (TES) for 15 minutes twice a day, in order to assess the effectiveness of the treatment in reducing subluxation, and in improving shoulder abduction function. The third group was used as a control (C group). After 6 weeks of electrical stimulation of the supraspinatus (S group) and deltoid (D group), a significant (p<0.05) reduction in subluxation was observed in both groups when compared to the C group. The maximal force of shoulder abduction showed a tendency to increase in the S group (p<0.10). A significant increase in maximal force was also observed in the D group. In most of the TES-treated muscles, the interference pattern of EMG at maximum voluntary contraction increased. The amplitude of the EMG activity of the stimulated muscle also increased. Thus, we concluded that electrical stimulation therapy of the supraspinatus and the deltoid muscle is an effective treatment modality for shoulder subluxation and shoulder abduction function in hemiplegic patients.  相似文献   

18.
The purpose of this study is to test various hypotheses about balancing-side jaw muscle recruitment patterns during mastication, with a major focus on testing the hypothesis that symphyseal fusion in anthropoids is due mainly to vertically- and/or transversely-directed jaw muscle forces. Furthermore, as the balancing-side deep masseter has been shown to play an important role in wishboning of the macaque mandibular symphysis, we test the hypothesis that primates possessing a highly mobile mandibular symphysis do not exhibit the balancing-side deep masseter firing pattern that causes wishboning of the anthropoid mandible. Finally, we also test the hypothesis that balancing-side muscle recruitment patterns are importantly related to allometric constraints associated with the evolution of increasing body size. Electromyographic (EMG) activity of the left and right superficial and deep masseters were recorded and analyzed in baboons, macaques, owl monkeys, and thick-tailed galagos. The masseter was chosen for analysis because in the frontal projection its superficial portion exerts force primarily in the vertical (dorsoventral) direction, whereas its deep portion has a relatively larger component of force in the transverse direction. The symphyseal fusion-muscle recruitment hypothesis predicts that unlike anthropoids, galagos develop bite force with relatively little contribution from their balancing-side jaw muscles. Thus, compared to galagos, anthropoids recruit a larger percentage of force from their balancing-side muscles. If true, this means that during forceful mastication, galagos should have working-side/balancing-side (W/B) EMG ratios that are relatively large, whereas anthropoids should have W/B ratios that are relatively small. The EMG data indicate that galagos do indeed have the largest average W/B ratios for both the superficial and deep masseters (2.2 and 4.4, respectively). Among the anthropoids, the average W/B ratios for the superficial and deep masseters are 1.9 and 1.0 for baboons, 1.4 and 1.0 for macaques, and both values are 1.4 for owl monkeys. Of these ratios, however, the only significant difference between thick-tailed galagos and anthropoids are those associated with the deep masseter. Furthermore, the analysis of masseter firing patterns indicates that whereas baboons, macaques and owl monkeys exhibit the deep masseter firing pattern associated with wishboning of the macaque mandibular symphysis, galagos do not exhibit this firing pattern. The allometric constraint-muscle recruitment hypothesis predicts that larger primates must recruit relatively larger amounts of balancing-side muscle force so as to develop equivalent amounts of bite force. Operationally this means that during forceful mastication, the W/B EMG ratios for the superficial and deep masseters should be negatively correlated with body size. Our analysis clearly refutes this hypothesis. As already noted, the average W/B ratios for both the superficial and deep masseter are largest in thick-tailed galagos, and not, as predicted by the allometric constraint hypothesis, in owl monkeys, an anthropoid whose body size is smaller than that of thick-tailed galagos. Our analysis also indicates that owl monkeys have W/B ratios that are small and more similar to those of the much larger-sized baboons and macaques. Thus, both the analysis of the W/B EMG ratios and the muscle firing pattern data support the hypothesis that symphyseal fusion and transversely-directed muscle force in anthropoids are functionally linked. This in turn supports the hypothesis that the evolution of symphyseal fusion in anthropoids is an adaptation to strengthen the symphysis so as to counter increased wishboning stress during forceful unilateral mastication. (ABSTRACT TRUNCATED)  相似文献   

19.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

20.
The purposes of this investigation were to examine the effects of electrode placement and innervation zone (IZ) location on: (a) the torque-related patterns of responses for absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) and (b) the mean absolute and normalized EMG amplitude and MPF values. In addition, the present study examined the variability between subjects for the location of the IZ for the vastus lateralis (VL). Eight men (mean+/-SD age=23.0+/-4.3yr) performed submaximal to maximal isometric muscle actions of the dominant leg extensors. During each muscle action, fifteen channels of bipolar surface EMG signals were detected from the vastus lateralis using a linear electrode array aligned with the long axis of the muscle fibers. The results indicated that there were differences among channels 1-15 for the patterns of responses and mean values for absolute and normalized EMG amplitude and MPF versus isometric torque. Thus, normalized EMG amplitude and MPF values from different individuals cannot be compared if the EMG signals were detected from different locations over the muscle. In addition, absolute and relative (to femur length) estimates of IZ location for the VL resulted in similar inter-subject variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号