首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Clones representing two distinct barley catalase genes, Cat1 and Cat2, were found in a cDNA library prepared from seedling polysomal mRNA. Both clones were sequenced, and their deduced amino acid sequences were found to have high homology with maize and rice catalase genes. Cat1 had a 91% deduced amino acid sequence identity to CAT-1 of maize and 92% to CAT B of rice. Cat2 had 72 and 79% amino acid sequence identities to maize CAT-2 and-3 and 89% to CAT A of rice. Barley, maize or rice isozymes could be divided into two distinct groups by amino acid homologies, with one group homologous to the mitochondria-associated CAT-3 of maize and the other homologous to the maize peroxisomal/glyoxysomal CAT-1. Both barley CATs contained possible peroxisomal targeting signals, but neither had favorable mitochondrial targeting sequences. Cat1 mRNA occurred in whole endosperms (aleurones plus starchy endosperm), in isolated aleurones and in developing seeds, but Cat2 mRNA was virtually absent. Both mRNAs displayed different developmental expression patterns in scutella of germinating seeds. Cat2 mRNA predominated in etiolated seedling shoots and leaf blades. Barley genomic DNA contained two genes for Cat1 and one gene for Cat2. The Cat2 gene was mapped to the long arm of chromosome 4, 2.9 cM in telomeric orientation from the mlo locus conferring resistance to the powdery mildew fungus (Erysiphe graminis f.sp. hordei).  相似文献   

3.
Two barley catalase genes respond differentially to light   总被引:1,自引:0,他引:1  
Cloned catalase probes from barley ( Hordeum vulgare L.) and maize ( Zea mays L.) were used to examine catalase gene expression in greened and etiolated leaves of several barley lines. Etiolated leaves had greater levels of an mRNA detected by barley Cat1 , compared with greened leaves, in all lines. In contrast, a Cat2 -like mRNA (homologous to Cat2 of maize) was induced by light and accumulated to high levels in greened leaves, compared to the negligible levels detected in etiolated leaves. This suggests that barley contains light-inducible and light-repressible catalase genes. In the catalase-deficient barley mutant RPr 79/4, no hybridization signal was detected when RNA from greened or etiolated leaves was probed with maize Cat2 , indicating that this mutant is deficient for the light-induced Cat mRNA. In etiolated seedlings of both RPr 79/4 and its motherline, the level of the Cat1 mRNA increased coordinately with a steady increase in catalase activity. Even though the mutant RPr 79/4 was able to grow to maturity in normal air, it sustained chlorosis and significant head sterility, probably due to the lack of a light-inducible catalase. Although the mutant RPr 79/4 is not completely lacking catalase (EC 1.11.1.6), the loss of the CAT-1 isozyme is evidently harmful. This observation underscores the protective role of catalases in plants.  相似文献   

4.
5.
6.
7.
8.
9.
10.
In maize three isozymic forms of catalase, CAT-1, CAT-2, and CAT-3 are encoded by three distinct and unliked structural genes (Cat1, Cat2 and Cat3). Catalase activity profiles and zymogram analysis were used to examine the spatial and temporal expression of the three genes during kernel maturation. Three developmental stages of catalase expression were observed in the growing kernel. During stage 1 (6-12 days after pollination), both Cat1 and Cat3 were expressed; during stage 2 (15-18 days after pollination) only Cat1 expression was observed; and during stage 3 (21-30 days after pollination), Cat1 and Cat2 were expressed. The major constituent tissues of the kernel were examined to determine their contribution to total kernel catalase expression. Each of the tissues was found to have a unique pattern of catalase gene expression. RNA blot analysis, using catalase gene-specific nucleic acid probes, suggests that the differential expression of the three catalase genes observed in the kernel is regulated by controlling the distribution of steady-state mRNA species for the three genes.  相似文献   

11.
12.
13.
We have compared the nucleotide and protein sequences of the three maize catalase genes with other plant catalases to reconstruct the evolutionary relationship among these catalases. These sequences were also compared with other eukaryotic and prokaryotic catalases. Phylogenies based on distances and parsimony analysis show that all plant catalases derive from a common ancestral catalase gene and can be divided into three distinct groups. The first, and major, group includes maizeCatl, barleyCat1, riceCatB and most of the dicot catalases. The second group is an apparent dicot-specific catalase group encompassing the tobaccoCat2 and tomatoCat. The third is a monocot-specific catalase class including the maize Cat3, barley Cat2, and riceCatA. The maize Cat2 gene is loosely related to the first group. The distinctive features of monocot-specific catalases are their extreme high codon bias at the third position and low degree of sequence similarity to other plant catalases. Similarities in the intron positions for several plant catalase genes support the conclusion of derivation from a common ancestral gene. The similar intron position between bean catalases and human catalase implies that the animal and plant catalases might have derived from a common progenitor gene sequence. Correspondence to: J.G. Scandalios  相似文献   

14.
15.
The isozymic forms of maize phosphoenolpyruvate carboxylase (P-enolpyruvate carboxylase) involved in photosynthetic CO2 fixation were shown by protein gel blot analysis to consist of 100-kDa subunits. The nonautotrophic isoform found in roots is comprised of 96-kDa subunits and is about 50-100-fold less prevalent. Further analysis of P-enolpyruvate carboxylase isoforms made use of cloned cDNA probes. Two cDNA clones were isolated from a library constructed from maize leaf poly(A) RNA. The largest clone was complementary to about 25% of P-enolpyruvate carboxylase mRNA, which is 3.4 kilobases in length. The quantity of P-enolpyruvate carboxylase mRNA in green, mature leaf tissue was estimated to be 0.20% of poly(A) RNA, whereas P-enolpyruvate carboxylase mRNA in roots was about 100-fold less prevalent. We used thermal denaturation of a P-enolpyruvate carboxylase cDNA probe hybridized to RNA gel blots to estimate the degree of sequence difference between mRNAs encoding different P-enolpyruvate carboxylase isoforms. There appear to be at least two prevalent P-enolpyruvate carboxylase mRNAs in green leaves which are significantly different in sequence, as are P-enolpyruvate carboxylase mRNAs in roots and shoots. The hybridization pattern of maize genomic DNA Southern blots indicates that P-enolpyruvate carboxylase is encoded by a small gene family.  相似文献   

16.
17.
18.
The role of hydrogen peroxide (H2O2) and various antioxidants in the regulation of expression of the three Cat and Gst1 genes of maize ( Zea mays L.) has been investigated. Low concentrations of H2O2 appeared to inhibit Cat1 , Cat3 , and Gst1 gene expression, while higher doses strongly induced these genes. Time course experiments indicated that high concentrations of H2O2 induced Cat1 , Cat2 , and Gst1 gene expression to higher levels, and in less time, than lower H2O2 concentrations. Induction of Cat3 was superimposed on the circadian regulation of the gene. These results demonstrate a direct signaling action of H2O2 in the regulation of antioxidant gene responses in maize.The effects of the antioxidant compounds N-acetylcysteine, pyrrolidine dithiocarbamate, hydroquinone, and the electrophile antioxidant responsive element (ARE)-inducer β -naphthoflavone were quite different and specific for each gene/compound/concentration combination examined. The response of each gene to each antioxidant compound tested was unique, suggesting that the ability of these compounds to affect expression of the maize Cat and Gst1 genes may not be the result of a common (antioxidant) mode of action. A putative regulatory ARE motif involved in the regulation of antioxidant and oxidative stress gene responses in mammalian systems is present in the promoter of all three maize catalase genes and we tested its ability to interact with nuclear extracts prepared from 10 days post-imbibition senescing scutella. Protein-DNA interactions in the ARE motif and the U2 snRNA homologous regions of the Cat1 promoter were observed, suggesting that ARE may play a role in the high induction of Cat1 in a tissue which, due to senescence, is under oxidative stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号