首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Phenelzine (PLZ) is an antidepressant with anxiolytic properties. Acute and chronic PLZ administration increase brain GABA levels, an effect due, at least in part, to an inhibition of the activity of the GABA metabolizing enzyme, GABA transaminase (GABA-T).2. Previous preliminary reports have indicated that acute PLZ treatment also elevates brain alanine levels. As with GABA, the metabolism of alanine involves a pyridoxal phosphate-dependent transaminase.3. In the study reported here, the effects of acute PLZ treatment on the levels of various amino acids, some of which are also metabolized by pyridoxal phosphate-dependent transaminases were compared in rat whole brain. Of the 6 amino acids investigated, only GABA and alanine levels were elevated (in a time- and dose-dependent manner).4. The elevation in brain alanine levels could be explained, at least in part, by a time- and dose-dependent inhibitory effect of PLZ on alanine transaminase (ALA-T), although as with GABA the increases are higher than expected from the degree of enzyme inhibition produced. In addition, we also showed that the elevation in alanine levels and the inhibition of alanine transaminase in the brain are retained after 14 days of PLZ treatment, and that PLZ produces a marked increase in extracellular levels of alanine.5. These results are discussed in terms of their relevance to synaptic function and to the pharmacological profile of PLZ.  相似文献   

2.
The effects of taurine supplementation on GABA-related amino acid homeostasis in developing nervous tissues of suckling rats were studied. In the first two weeks of postnatal growth, cerebral cortex and cerebellum appear more accessible to taurine supplementation in comparison to retina; in addition, different changes in excitatory/inhibitory amino acids were observed. After the 5th day of life, in the retina and cerebellum of taurine-supplemented pups a decrease in GABA levels was found; in contrast, in cerebral cortex GABA content significantly increased throughout 20 days of postnatal growth. In all nervous tissues studied (except for cerebellum) glutamine concentration increased at the 5th day; then in cerebellum and in retina, but not in cerebral cortex, a significant decrease until the 20th day occurred. Furthermore, in cerebellum and retina taurine supplementation decreased glutamate levels, in comparison to controls, at the 10th and until the 20th day of postnatal life, respectively, whereas in cerebral cortex an increase in glutamate level was observed only at the 5th day. In conclusion, taurine supplementation, in excess to the usual amount from the mother's milk, affected the glutamate compartments in various cell types. The changes in GABA-related amino acid concentrations in cerebral cortex, cerebellum, and retina may depend on the different pattern of the metabolic processes at different maturative stages.  相似文献   

3.
Abstract: The amino acid γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in brain, and GABAergic neurons have been proposed to play a major role in basal ganglia physiology. In the neostriatum (caudate putamen), medium-sized aspiny interneurons, as well as neostriatal output neurons that project to several brain regions, use GABA as their neurotransmitter. Dopamine fibers arising from the substantia nigra represent a major input to the neostriatum where, besides their classic neurotransmitter role, they are seemingly involved in the regulation of amino acid neurotransmitter release. To further characterize the nature of some of the amino acid/dopamine interactions, selective dopaminergic deafferentations were produced in neonatal rats (3 days postnatal) by intraventricular administration of the neurotoxin 6-hydroxydopamine (6-OHDA); the noradrenergic neurons were protected by prior administration of desmethylimipramine. After a 3-month survival, levels of catecholamines, indoleamines, and amino acids were determined in cingulate cortex, thalamus, and neostriatum. In addition, GABAA receptors were measured in membrane preparations from these three regions, using the specific agonist [3H]muscimol. In the 6-hydroxydopamine-lesioned rats, levels of dopamine and its metabolites homovanillic acid, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine were decreased, as expected, in cortex and neostriatum, but remained unmodified in thalamus. In all three regions, serotonin content was increased; its metabolite, 5-hydroxyindole-3-acetic acid, was also elevated, but only in cortex and neostriatum. The levels of GABA were increased in neostriatum and thalamus, but remained unmodified in cortex. Glycine was increased in all three regions examined. There were also increases of phosphatylethanolamine and serine in thalamus, and of aspartic acid and alanine in neostriatum. The density of GABAA binding sites was increased in neostriatum, but remained unchanged in cortex and thalamus. The changes in amino acid levels and [3H]muscimol binding sites induced by a neonatal 6-hydroxydopamine treatment differ from those found after similar lesions in adult animals, possibly because of the plastic and synaptic rearrangements that can still occur during early postnatal development. The present results also demonstrate that adaptations occur in response to a dopaminergic deafferentation at an early age and that these exhibit a regional specificity.  相似文献   

4.
In an attempt to estimate the pool size of glutamate and other amino acids in γ-aminobutyric acid (GABA)-containing neurons, we determined the content of 12 amino acids in the bilateral substantia nigra of rats, in which unilateral striatal lesions had been made with kainic acid two weeks earlier. The assay of the amino acids (including glutamate, aspartate, glutamine, asparagine, glycine, and GABA) and ethanolamine was based on HPLC and fluorimetric detection after precolumn derivatization with o-phthaldialdehyde. The levels of all measured amino acids (except those of tyrosine, threonine, and ethanolamine) were decreased in the affected striatum, but only the levels of aspartate, taurine, and GABA were lowered in the ipsilateral substantia nigra. These results indicate that the pool size of the various amino acids in the striatonigral GABAergic pathway is small compared to their nigral content, and that in addition to GABA a significant fraction of aspartate and taurine may be confined to nerve terminals in the substantia nigra.  相似文献   

5.
—Guanosine 3′,5’cyclic monophosphate (cyclic GMP) levels in incubated slices of mouse cerebellum are increased 10-fold by glutamate and two-to three-fold by glycine or γ-aminobutyric acid (GABA). Glutamate also produces a 10-fold increase in adenosine 3′,5’cyclic monophosphate (cyclic AMP) in the same tissue. However, GABA decreases cyclic AMP levels 30-40 per cent, and glycine produces only a transient 50 per cent accumulation of this cyclic nucleotide. Theophylline slightly augments the accumulation of cyclic GMP produced by all three amino acids but markedly attenuates the accumulation of cyclic AMP produced by glutamate. In the absence of Ca2+, none of the three amino acids has any effect on cyclic GMP levels, and glutamate produces only a 50 per cent rise in cyclic AMP levels. The decrease of cyclic AMP levels produced by GABA is not affected by theophylline or by the absence of Ca2+. These data suggest an involvement of both cyclic GMP and cyclic AMP in the neurochemical actions of glutamate, GABA and glycine.  相似文献   

6.
Amino acid changes in the retina, vitreous, lens, iris-ciliary body and cornea of the rat eye were determined during postnatal growth. The amino acid concentrations of the ocular tissues showed varying profiles at various developmental stages. These results suggest a different timetable for development of each ocular tissue or indicate a synthesis of specific proteins in the postnatal period. Adult amino acid levels appeared to be fully reached on the 30th day after birth at the latest. Quantitatively the greatest changes were observed in taurine concentrations, which increased in all five ocular tissues during maturation. GABA changes paralleled those of taurine in the retina, whereas in the other ocular tissues GABA changes were very low. The greatest decrease in glutamic acid and aspartic acid concentration during postnatal development was in the lens, where these amino acids probably are needed for the synthesis of the lenticular proteins, the alpha-, beta-, and gamma-crystallines.  相似文献   

7.
The effects of corticostriatal deafferentation (decortication) and destruction of intrinsic neurons (intrastriatal kainate injection) on the extracellular concentration, and veratrine-releasable pools, of endogenous amino acids in the rat striatum were examined using the in vivo brain dialysis technique. Intracellular amino acid content was also determined. Decortication reduced selectively intra- and extracellular levels of glutamate (Glu) and aspartate (Asp). Extracellular changes were more pronounced than those in tissue content. gamma-Aminobutyric acid (GABA), taurine (Tau), and phosphoethanolamine (PEA) levels were not affected, whereas nonneuroactive amino acids were increased at 1 week but not at 1 month post-lesion. The intracellular pool of Glu and Asp was also reduced in kainate-lesioned striata. However, extracellular levels of these compounds were not affected significantly by this treatment. The tissue content of all other amino acids was decreased, the most prominent change being in the concentration of GABA. Extracellular GABA concentration was also reduced dramatically, whereas the concentrations of noneuroactive amino acids were increased to varying degrees. These data suggest that transmitter pools of neuroactive amino acids are an important supply for their extracellular pools. Lesion-induced alterations in nonneuroactive amino acids are discussed with regard to the loss of metabolic pools, glial reactivity, and changes in blood-brain barrier transport. Veratrine induced a massive release of neuroactive amino acids such as Glu, Asp, GABA, and Tau into the extracellular fluid, and a delayed increase in PEA. Extracellular levels of neuroactive amino acids were raised slightly. Decortication reduced, selectively, the amounts of Glu and Asp released by veratrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to examine and validate the use of microdialysis for sampling and pharmacologically manipulating extracellular amino acids in the brain. Repeated use of microdialysis probes in acute intracerebral experiments did not significantly alter the relative recovery in vitro for the amino acids quantitated (GABA, aspartate, glutamate, glycine, taurine, and alanine). Regional differences in basal levels of some of the amino acids were detected in dialysates collected from the dorsomedial hypothalamus, striatum, and frontal cortex. The percent in vitro recoveries for the amino acids from the probes used in the three regions were not significantly different suggesting that the regional differences in basal levels of amino acids were functionally derived and not a consequence of variations in probe recovery. Perfusion with nipecotic acid, an inhibitor of GABA uptake, resulted in selective elevations in extracellular GABA in the three regions studied. Conversely, perfusion with high-potassium, a depolarizing agent, resulted in significant elevations in not only extracellular GABA but also aspartate, glutamate, and taurine. Thus, microdialysis is a method which can be employed to assess and to pharmacologically manipulate extracellular amino acids in the rat brain.  相似文献   

9.
FREE AMINO ACIDS IN DEVELOPING RAT RETINA   总被引:5,自引:4,他引:1  
—During postnatal growth the free amino acids pattern of rat retina differs at various developmental stages. The adult level for individual amino acids is reached on the 30th day of maturation. During differentiation the taurine, glutamic acid, GABA, glutamine, aspartic acid, glycine arginine, methionine and histidine levels increase while proline. alanine, ornithine and tyrosine decrease.  相似文献   

10.
Changes in free amino acids were examined in the central nervous system of mice treated with caffeine for three weeks. Caffeine was administered in the drinking water, and at the end of three weeks the level of caffeine in the cerebral cortex was 113±19 g/g. When amino acid levels in cerebral hemispheres, midbrain, pons and medulla, and cerebellum were measured a significant increase in glutamine levels was found in all four regions. Glycine, alanine, serine, threonine, and GABA were significantly reduced in some regions. Caffeine appears to alter some of the metabolic or transport processes regulating amino acid pools in the brain. The decrease of GABA found in pons and medulla may contribute to the observed increase in reflex excitability after caffeine.Special issue dedicated to Dr. Elling Kvamme  相似文献   

11.
Abstract—
  • 1 Upon incubation, slices of brain tissue took up fluid; the degree of swelling increased with increasing age. No sweiling occurred in slices from foetal brain. Since this swelling was associated with increases in the inulin space, the percentage of inulin space in slices at the end of incubation increased during brain development.
  • 2 Most of the capacity for ion transport seemed to be absent from foetal brain. In vivo and in slices, Na+ was very high and K+ was very low in comparison to levels at other ages. There was a rapid change around birth, but no significant change at later ages. Upon incubation, Na+ levels increased in other slices, but not in slices of foetal brain.
  • 3 Upon incubation of the slices, ATP levels were restored to levels close to those in the living brain; there were no significant alterations in available energy during development to explain changes in amino acid transport.
  • 4 The composition of the free pool of cerebral amino acids in vivo changed with development, with some compounds (glutamic acid and related compounds) increasing, others (mostly‘essential’amino acids) decreasing, with age. These changes were not linear with time, and the level of a compound might exhibit several peaks during development.
  • 5 The uptake (influx) of taurine, glutamate and glycine into brain slices increased rapidly during the foetal and early neonatal periods, reached a maximum between 2 and 3 weeks of postnatal age and then declined to adult levels. The levels of steady-state uptake with glycine also exhibited a maximal peak at 2-3 weeks of postnatal age. Steady-state uptake of taurine and glutamate reached adult levels by about 3 weeks of age.
  • 6 The pattern of inhibition of amino acid transport by two specific amino acid analogues changed during development for some amino acids (GABA, glycine and glutamate), indicating an alteration in substrate specificity.
  • 7 The results demonstrate complex changes in cerebral amino acid transport during development, with several maxima or minima and with changes in specificity for at least some compounds.
  相似文献   

12.
Park KB  Oh SH 《Bioresource technology》2007,98(8):1675-1679
Yogurt with high levels of gamma-aminobutyric acid (GABA), free amino acids and isoflavones was developed using lactic acid bacteria (LAB) and germinated soybean extract. Fermented soya milk (GABA soya yogurt) produced with starter and substrate had the GABA concentration of 424.67 microg/gDW, whereas fermented milk produced by a conventional method had GABA less than 1.5 microg/gDW. The GABA soya yogurt also contained significantly high levels of free amino acids and isoflavones compared with other conventional yogurts. The results suggested that the Lactobacillus brevis OPY-1 and germinated soybean possessed a prospect to be applied in dairy and other health products with high nutritive values and functional properties.  相似文献   

13.
Glutamate and related amino acids were determined in 53 discrete brain areas of 3-and 29-month-old male Fischer 344 rats microdissected with the punch technique. The levels of amino acids showed high regional variation-the ratio of the highest to lowest level was 9 for aspartate, 5 for glutamate, 6 for glutamine, and 21 for GABA. Several areas were found to have all four amino acids at very high or at very low level, but also some areas had some amino acids at high, others at low level. With age, in more than half of the areas, significant changes could be observed, decrease occurred 5 times more frequently than increase. Changes occurred more often in levels of aspartate and GABA than in those of glutamate or glutamine. The regional levels of glutamate and its related amino acids show severalfold variations, with the levels tending to decrease in the aged brain.  相似文献   

14.
Abstract: Tetanus toxin is a potent neurotoxin that is widely considered to produce its effect through impairment of inhibitory neurotransmission. We report the effect of a single unilateral intrahippocampal injection of tetanus toxin on extracellular levels of neuroactive amino acids in freely moving rats, at times ranging between 1 and 7 days posttreatment. Tetanus toxin treatment did not alter extracellular levels of aspartate, glutamate, and taurine at any time during the study. However, although extracellular GABA levels were unaffected by toxin injection 1, 2, and 3 days after treatment, they were reduced (45 ± 8% of contralateral vehicle-injected level) at day 7. Challenge with a high K+ concentration, 7 days after treatment, produced elevations in extracellular levels of taurine and GABA in both vehicle- and toxin-injected hippocampi, with evoked levels of GABA being lower in the toxin-treated side (39 ± 16% of contralateral vehicle-injected level). Aspartate and glutamate levels were not increased by high-K+ infusion. These findings are discussed in relation to the possible role that an imbalance in excitatory/inhibitory tone may play in the production of tetanus toxin-induced neurodegeneration.  相似文献   

15.
We have measured the free amino acid content of three distinct astroglial cell clones derived from permanent lines obtained after "spontaneous immortalization" of 8-day postnatal mouse cerebellar cultures; these clones show characteristics similar to the Golgi Bergmann glia cells, the fibrous astrocytes, and the velate protoplasmic astrocytes, i.e., the three main types of cerebellar astrocytes. The relative concentrations of amino acids that are thought to act as neurotransmitters were compared in confluent cultures of the different astroglial clones. The most striking result was a high concentration of glycine (20% of free amino acids), even in astroglial cells cultured in a glycine-free medium, a finding suggesting that glycine is synthesized by the astroglial clones. Furthermore, no gamma-aminobutyric acid (GABA) was detected. In contrast, a "neuron-like" clone derived from the same cerebellar culture contained GABA, whereas its glycine content was much lower than that of the astroglial clones. The present results, together with our previous finding of glycine synthesis in an astrocytic clone derived from 14-day postnatal mouse cerebella transformed by simian virus 40, indicate that a high glycine content may be characteristic of many cerebellar astroglial types.  相似文献   

16.
The uptake and release of glutamate and of GABA, as well as the effect of high potassium concentrations (35 or 80 mM) hereupon, were studied by aid of 14C-labelled amino acids in brain cortex slices from rats of different ages between birth and adulthood. Both the extent of the uptake (i.e. the tissue/medium ratio of 14C at, or close to, equilibrium) and the rate of uptake (i.e. the tissue/ medium ratio of 14C after short (5 min) incubation periods) increased with age. Differences were, however, found between glutamate and GABA, and the extent of the GABA uptake had a distinct maximum during the second postnatal week. At all ages, high concentrations of potassium caused a decrease in the rate of GABA uptake but were without effect on the rate with which glutamate was taken up. The release of the two amino acids occurred with approximately the same half-time (50 min) in slices from animals of at least 14 days of age. Before that time the release of glutamate was somewhat faster, whereas that of GABA was much slower, especially during the first postnatal week (half-time 90 min). The ontogenetic alterations in the effect of excess potassium were complex and varied both between the two potassium concentrations used and between the two amino acids. The results are thus compatible with the existence of different transport systems for the two amino acids, They also suggest that glutamate may exert other functions in addition to its role as a putative transmitter.  相似文献   

17.
The extracellular levels of aspartate, glutamate and GABA were measured by microdialysis, coupled with an HPLC method, in rat prefrontal cortex (mPFC) and ventral hippocampus (VH) before and during the performance of a step-down inhibitory task. The basal levels of glutamate were about 50% higher than those of aspartate, and GABA levels were about 20-folds smaller than those of the excitatory amino acids. There were no significant differences in the basal levels of any of the three amino acids between the two brain regions. The extracellular levels of aspartate increased during acquisition and recall trials in both VH and mPFC, whereas those of glutamate increased in the VH during acquisition only. A significant increase in GABA levels was also detected during acquisition but only in the mPFC. The neuronal origin of the increased extracellular levels of aspartate, glutamate and GABA was demonstrated by administering tetrodotoxin directly into the mPFC or VH by reverse dialysis. These findings, together with previous evidence from our and other laboratories, indicate a differential release of aspartate and glutamate from excitatory neurons during the performance of behavioral responses, and therefore, distinct roles for the two excitatory amino acids should be envisaged.  相似文献   

18.
Total pool of glutamate, glutamine and GABA in the hemispheres increases during postnatal life of rats, the increase being due to that in free and bound forms of amino acids. In the cerebellum of 1-day rats, the content of free and bound glu, gln asp, GABA, bound ala and free gly is lower, whereas the level of free glu and ala, bound gly is higher than in mature animals. To the end of the 1st week, total amino acid content decreases, except GABA, which is increased. Aminon acid content begins to increase at the 21th and 28th days of postnatal life.  相似文献   

19.
Changes in the amounts of proteins and amino acids in synaptosomes and whole tissue from the olfactory bulb and cerebral cortex of rats were measured during the period 5-25 days postnatal. The amount of neurotransmitter type amino acids (such as GABA, glutamate and aspartate) associated with synaptosomes obtained from 1g of brain tissue increased dramatically with the age of the animals, whereas non-transmitter type amino acids (such as serine and glutamine) showed relatively little change. The results were in harmony with an earlier cessation of synaptogenesis in the olfactory bulb than in the cerebral cortex.  相似文献   

20.
Fluoxetine, as a serotonin re-uptake inhibitor augments serotonin concentration within the synapse by inhibiting the serotonin transporter. The contribution of amino acids has also been shown in depression. We hypothesized that fluoxetine exerts its actions at least in part by intervening brain signaling operated by amino acid transmitters. Therefore the aim of this study is to supply neurochemical evidence that fluoxetine produces changes in amino acids in cerebrospinal fluid of rats. Sprague-Dawley rats were anesthetized and concentric microdialysis probes were implanted stereotaxically into the right lateral ventricle. Intraperitoneal fluoxetine (2.5 or 5 mg/kg) or physiological saline was administered and the probes were perfused with artificial cerebrospinal fluid at a rate of 1 μl/min. In the chronic fluoxetine group, the rats were treated daily with oral fluoxetine solution or inert syrup for 3 weeks. The microdialysis probes were placed on the 21st day and perfused the next day. Fluoxetine was ineffective in changing the cerebrospinal fluid GABA levels at the dose of 2.5 mg/kg but produced a significant increase in the perfusates following injection of 5 mg/kg of fluoxetine (P < 0.05). Oral fluoxetine administration (5 mg/kg) for 21 days also elevated the CSF GABA levels by approximately 2-fold (P < 0.05). l-glutamic acid levels were not affected in all groups. These neurochemical findings show that fluoxetine, a selective serotonin re-uptake inhibitor affects brain GABA levels indirectly, and our results suggest that acute or chronic effects may be involved in beneficial and/or adverse effects of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号