首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the interaction of meso-tetrakis (N-para-methylanilium) porphyrin (TMAP) in its free base and Fe(II) form (Fe(TMAP)OAc) as a new derivative, with high molecular weight DNA at different ionic strengths, using various spectroscopic methods and microcalorimetry. The data obtained by spectrophotometery, circular dichroism (CD), fluorescence quenching and resonance light scattering (RLS) have demonstrated that TMAP association with DNA is via outside binding with self-stacking manner, which is accompanied with the "end-on" type complex formation in low ionic strength. However, in the case of Fe(TMAP)OAc, predominant mode of interaction is groove binding and after increasing in DNA concentration, unstable stacking-type aggregates are formed. In addition, isothermal titration calorimetric measurements have indicated the exothermic process of porphyrins binding to DNA, but the exothermisity in metal derivative of porphyrin is less than the free base. It confirmed the formation of a more organized aggregate of TMAP on DNA surface. Interactions of both porphyrins with DNA show high sensitivity to ionic strength. By addition of salt, the downfield CD signal of TMAP aggregates is shifted to a higher wavelength, which indicates some changes in the aggregates position. In the case of Fe(TMAP)OAc, addition of salt leads to changes in the mode of binding from groove binding to outside binding with self-stacking, which is accompanied with major changes in CD spectra, possibly indicating the formation of "face-on" type complex.  相似文献   

2.
HL-60/AMSA is a human leukemia cell line that is 100 times more resistant to the cytotoxic actions of the antineoplastic, topoisomerase II-reactive DNA intercalating acridine derivative amsacrine (m-AMSA) than is its parent HL-60 line. HL-60/AMSA cells are minimally resistant to etoposide, a topoisomerase II-reactive drug that does not intercalate. Previously we showed that HL-60 topoisomerase II activity in cells, nuclei, or nuclear extracts was sensitive to m-AMSA and etoposide, while HL-60/AMSA topoisomerase II was resistant to m-AMSA but sensitive to etoposide. Now we show that purified topoisomerase II from the two cell lines exhibits the same drug sensitivity or resistance as that in the nuclear extracts although the magnitude of the m-AMSA resistance of HL-60/AMSA topoisomerase II in vitro is not as great as the resistance of the intact HL-60/AMSA cells. In addition HL-60/AMSA cells are cross-resistant to topoisomerase II-reactive intercalators from the anthracycline and ellipticine families and the pattern of sensitivity or resistance to the cytotoxic actions of the various topoisomerase II-reactive drugs is paralleled by topoisomerase II-reactive drug-induced DNA cleavage and protein cross-link production in cells and the production of drug-induced, topoisomerase II-mediated DNA cleavage and protein cross-linking in isolated biochemical systems. In addition to its lowered sensitivity to intercalators, HL-60/AMSA differed from HL-60 in 1) the susceptibility of its topoisomerase II to stimulation of DNA topoisomerase II complex formation by ATP, 2) the catalytic activity of its topoisomerase II in an ionic environment chosen to reproduce the environment found within the living cell, and 3) the observed restriction enzyme pattern on a Southern blot probed with a cDNA for human topoisomerase II. These data indicate that an m-AMSA-resistant form of topoisomerase II contributes to the resistance of HL-60/AMSA to m-AMSA and to other topoisomerase II-reactive DNA intercalating agents. The drug resistance is associated with additional biochemical and molecular alterations that may be important determinants of cellular sensitivity or resistance to topoisomerase II-reactive drugs.  相似文献   

3.
In the present study, the interaction between the HSA and MnCORM in vitro under physiological conditions, was investigated through ultraviolet-visible (UV-vis) absorption, fluorescence, time-resolved fluorescence, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic techniques and in silico molecular docking methods. Binding parameters such as the binding constant, number of binding sites and binding force were obtained from the fluorescence data. Thermodynamic interaction revealed that the reaction was spontaneous (ΔG < 0) and hydrogen bond and van der Waals interaction were primarily involved in the binding. The changes induced in the secondary structure conformation due to the MnCORM interaction were monitored using CD and FT-IR spectroscopic techniques. The results showed reduction in α-helix conformation and corresponding increase in β-sheet and unordered structures due to slight unfolding. The time-resolved fluorescence decay confirmed the static quenching mechanism of the MnCORM. The molecular docking studies revealed that the MnCORM interacted at Sudlow’s site II of domain IIIA through hydrogen bond and van der Waals interactions. In order to understand the drug distribution and elimination, studies on the drug molecule interaction with HSA are vital. Therefore, it is evident that MnCORM interacts with HSA through ground state complex formation and thus suitable for in vivo delivery.  相似文献   

4.
A sensitive fluorescent method is described for the detection of 4′-(9-acridinylamino)-methanesulfon-m-anisidide (AMSA) in serum. The assay is based on the alkaline hydrolysis of AMSA into 9(10H)-acridone. While AMSA has negligible fluorescence, 9(10H)-acridone fluoresces brilliantly (excitation 266 nm, emission 470 nm). The assay is shown to be linear from 0.01 to 1.0 μm. In addition, the assay is shown to be useful, in conjunction with an ethyl acetate extraction, in distinguishing serum levels of parent AMSA from metabolized or protein-bound AMSA.  相似文献   

5.
CD91 plays an important role in the scavenging of apoptotic material, possibly through binding to soluble pattern-recognition molecules. In this study, we investigated the interaction of CD91 with mannan-binding lectin (MBL), ficolins and lung surfactant proteins. Both MBL and L-ficolin were found to bind CD91. The MBL-CD91 interaction was time- and concentration-dependent and could be inhibited by known ligands of CD91. MBL-associated serine protease 3 (MASP-3) also inhibited binding between MBL and CD91, suggesting that the site of interaction is located at or near the MASP-MBL interaction site. This was confirmed by using MBL mutants deficient for MASP binding that were unable to interact with CD91. These findings demonstrate that MBL and L-ficolin interact with CD91, strongly suggesting that they have the potential to function as soluble recognition molecules for scavenging microbial and apoptotic material by CD91.  相似文献   

6.
An new water soluble palladium (II) complex of formula [Pd(bpy)(Oct-Gly)]NO(3), (where bpy is 2,2'-bipyridine and Oct-Gly is octylglycine) have been synthesised. The Pd(II) complex has been characterized by elemental analysis and conductivity measurements as well as spectroscopic methods such as infrared, (1)H NMR, and ultraviolet-visible. The interaction between the new Pd(II)-complex (2,2'-bipyridin octylglycinato Pd(II) nitrate), an anti-tumor component, with beta-lactoglobulin-A and -B (BLG-A and -B) was studied by fluorescence spectroscopy and far and near-UV circular dichroism (CD) spectrophotometric techniques. A strong fluorescence quenching interaction of Pd(II) complex with BLG-A and -B was observed. The quenching constant was determined using the modified Stern-Volmer equation. The calculated binding constants of Pd(II) complex with BLG-A and -B were 0.51 and 0.28 (x 10(6) M(-1)) and the corresponding average number of binding sites were 2.8 and 1.5, respectively. Far-UV CD studies showed that the Pd(II) complex can significantly change the secondary structure of BLG-A and -B via an increase in the content of alpha-helix structure, which stabilizes the secondary structure of the proteins. Near-UV CD data clearly indicate the alteration in the tertiary structure of BLG-A and -B due to the interaction with Pd(II) complex. Pd(II) complex can change and stabilize both the secondary and tertiary structures of BLG-A more than BLG-B. These conformational changes may be considered to be a deleterious effect of the designed ligand on the protein structures. The difference in the interaction properties observed for BLG-A and -B with Pd(II) complex is due to the difference in the amino acid sequences between these two variants.  相似文献   

7.
Circular dichroism (CD) and UV absorption spectroscopy were utilized for the first time to investigate the interaction between leukotriene B4 (LTB4) and human serum albumin (HSA) in vitro. The weak intrinsic CD signal of LTB4 was enhanced fivefold in the presence of HSA. The red-shifted, hypochromic, and reduced vibrational fine structure of the ligand/protein UV absorption spectrum indicated complexation of the two molecules in solution. Results obtained from CD titration experiments were subjected to non-linear regression analysis to estimate the binding parameters (Ka = 6.7 x 10(4) M(-1), n = 1). Palmitic acid strongly decreased the induced CD signal of the LTB4/HSA complex, suggesting the role of a high-affinity fatty acid HSA binding site in the leukotriene complexation. Molecular modeling calculations based on the crystal structure of HSA predicted that the long-chain fatty acid site that overlaps with drug binding site II in subdomain IIIA was the most likely binding location for LTB4. Using the drug site II-specific marker ligand rac-ibuprofen, this prediction was confirmed with induced-CD displacement measurements. To the authors' knowledge, the current study represents the first demonstration of binding of LTB4 to HSA in vitro and has implications for the biological transport of this important pro-inflammatory mediator in vivo.  相似文献   

8.
The drug tiamulin interacts with phospholipid membranes mainly in a nonelectrostatic way. At pH-values where the drug possesses a net positive charge only small binding is observed. In the presence of cholesterol tiamulin is excluded from the membranes. The interaction of tiamulin with membranes cannot be explained by a simple partitioning but is governed by structural rearrangements of the lipid phase. At low drug concentrations we observe sigmoidal binding characteristics in the rigid as well as in the fluid state up to a level of about 2-3 mol drug bound per 1000 mol phospholipid. The range in which this cooperative interaction occurs can be compared with the drug concentration in the erythrocyte membrane which protects from hypotonic lysis. Further addition of tiamulin to the rigid membrane leads to fluidization. Saturation of the membranes with tiamulin is completely in parallel to their fluidization. The relevance of the cooperative interaction at low drug concentration and of the subsequent fluidization at elevated concentration for the microsomal membrane is discussed.  相似文献   

9.
The genotoxic effect of AMSA, an anti-tumor agent, was evaluated using the micronucleus and anaphase-telophase tests. The doses assayed by the in vivo micronucleus test were 1.5, 3 and 6 mg/kg: they are within the range of those used in clinical trials. A significant increase of micronucleated cells (P less than 0.01) was observed in the three assayed doses, with a linear dose response (r 0.98). In the in vitro test, 3 drug concentrations, i.e. 10, 1 and 0.1 microgram/ml, were analyzed with the 2 higher doses. AMSA showed a marked inhibition of cellular replication, but with 0.1 microgram/ml it was possible to determine an increase (P less than 0.01) in aberrations in anaphase-telophase cells. Both studies clearly demonstrate the clastogenic effect of the drug, which should be taken into account when considering its carcinogenic risk.  相似文献   

10.
Erythropoietin (EPO) is a hematopoietic growth factor. This substance, as a strong cell protector, can increase cell maintenance during different damages of central nervous system. Since the brain-blood barrier prevents the entrance of large proteins similar to EPO into the brain, its systemic delivery gets limited. The aim of this study was to find an alternative approach for EPO delivery into the brain to skip the blood-brain barrier prevention. So, a new quaternary ammonium-based cationic Gemini surfactant has been used to study the interaction of the cationic Gemini surfactant (as a carrier) with EPO using various spectroscopic techniques of (fluorescence and circular dichroism (CD)) and thermal denaturation. Fluorescence spectroscopy studies show the formation of Gemini-EPO complex and also static quenching of protein upon this interaction. The binding parameters of number of binding sites, binding affinity, Gibbs free energy, enthalpy, and entropy were calculated according to fluorescence quenching studies. Also, CD results have further represented that the content of regular secondary structure of EPO did not show any significant alterations by increasing the Gemini concentration. Finally, thermal denaturation behavior of EPO results indicates decreasing the thermal stability of protein in the presence of Gemini. In conclusion, the obtained results proposed that Gemini as a cationic surfactant can bind to EPO without any significant diverse effects on the structure of this drug (EPO) which can be considered as a candidate for EPO delivery in future.  相似文献   

11.
4'-(9-acridinylamino) methanesulfon-m-anisidide (amsacrine or AMSA), an antitumor drug which has been tested in clinical trials, is known to bind to DNA by the intercalation of its 9-amino acridine moiety between DNA base pairs. Like AMSA, a peptidic derivative of 4-(9-acridinylamino) aniline, 4-(9-acridinylamino)-N-(lysylglycyl) aniline (ALGA) binds to DNA by intercalation and its affinity for the target was found to be higher than the parent drug. The antitumor effect of AMSA and ALGA has been monitored by drug exposure assays on EMT 6 cells. AMSA showed a slightly higher cytotoxic activity. The cell cycle effects of both drugs were studied using flow cytofluorimetry; an accumulation of cells in the S phase followed by a cycle arrest in the G2 phase, characteristic of intercalating drugs, was observed.  相似文献   

12.
The intercalative binding of the acridine antitumour drug 4'-(9-acridinylamino) methane-sulphonate-m-anisidine, a known inhibitor of nucleic acid synthesis, to native calf thymus DNA has been studied using optical titration method. Amsacrine (AMSA) exhibits positive cooperativity in their equilibrium binding to DNA as indicated by the positive slope in the initial region of the binding isotherms (Scatchard plots) under conditions simulating physiological ionic strengths. m-AMSA binds with a higher degree of cooperativity than o-AMSA. Although this correlates with the effectiveness of the drugs as antitumour agents, the exact relationship between the observation of cooperative binding and pharmacological activity is yet to be determined.  相似文献   

13.
The interaction between native calf thymus deoxyribonucleic acid (DNA) and Fe(III)- N ,N'-ethylene-bis (salicylideneiminato)-chloride, Fe(Salen)Cl, was investigated in aqueous solutions by UV-visible (UV-vis) absorption, circular dichroism (CD), thermal denaturation and viscosity measurements. The results obtained from CD, UV-vis and viscosity measurements exclude DNA intercalation and can be interpreted in terms of an electrostatic binding between the Fe(Salen)(+) cation and the phosphate groups of DNA. The trend of the UV-vis absorption band of the Fe(Salen)Cl complex at different ratios [DNA(phosphate)]/[Fe(Salen)Cl] and the large increase of the melting temperature of DNA in the presence of Fe(Salen)Cl, support the hypothesis of an external electrostatic interaction between the negatively charged DNA double helix and the axially stacked positively charged Fe(Salen)(+) moieties, analogously to what reported for a number of porphyrazines and metal-porphyrazine complexes interacting with DNA.  相似文献   

14.
Using CD measurements we show that the interaction of netropsin to poly(dA-dT).poly(dA-dT) involves two binding modes at low ionic strength. The first and second binding modes are distinguished by a defined shift of the CD maximum and the presence of characteristic isodichroic points in the long wavelength range from 313 nm to 325 nm. The first binding mode is independent of ionic strength and is primarily determined by specific interaction to dA.dT base pairs. Employing a netropsin derivative and different salt conditions it is demonstrated that ionic contacts are essential for the second binding mode. Other alternating duplexes and natural DNA also exhibit more or less a second step in the interaction with netropsin observable at high ratio of ligand per nucleotide. The second binding mode is absent for poly(dA).poly(dT). The presence of a two-step binding mechanism is also demonstrated in the complex formation of poly(dA-dT).poly(dA-dT) with the distamycin analog consisting of pentamethylpyrrolecarboxamide. While the binding mode I of netropsin is identical with its localization in the minor groove, for binding mode II we consider two alternative interpretations.  相似文献   

15.
J Reuben  E J Gabbay 《Biochemistry》1975,14(6):1230-1235
The binding of manganese(II) to DNA was studied by monitoring the concentration of free Mn2+ by electron paramagnetic resonance (EPR). It was found that the association constnat of the Mn-DNA complex depends upon the degree of saturation. The competitive effects of magnesium, calcium, sodium, and a number of organic cations including the antibiotic drug daunomycin were analyzed and the parameters describing the cation-DNA interaction were evaluated. It was found that the association constant as well as the parameter describing its dependence upon the degree of saturation decrease along the series Mn, Mg, Ca, Na. Differences in the extent of interaction with the base nitrogens (N-7) are suggested as the possible mechanisms leading to these observations. The EPR spectrum of the manganese-DNA complex was found to be similar to that of manganese-nucleotide complexes suggesting a similar mode of coordination. A comparison of the results of competitive and direct binding studies reveals some salient features of the small molecule-DNA interaction and leads to the conclusion that manganese binds at the major groove of the DNA helix.  相似文献   

16.
Alefacept is a chimeric protein combining CD58 immunoglobulin-like domain 1 with human IgG1 Fc. Alefacept mediates adhesion by bridging CD2 on T cells to activating Fc receptors on effector cells, but the equilibrium binding parameters have not been determined. Alefacept mediated T cell killing by NK cells and adhesion between CD2- and CD16-expressing cells at an optimum concentration of 100 nM. We introduce novel measurements with supported planer bilayers, from which key two-dimensional and three-dimensional parameters can be determined by data fitting. Alefacept competitively inhibited cell bilayer adhesion mediated by the CD2-CD58 interaction. Alefacept mediated maximal adhesion of CD2(+) T cells to CD16B, an Fc receptor, in planar bilayers at 500 nM. A mechanistic model for alefacept-mediated cell-bilayer adhesion allowed fitting of the data and determination of two-dimensional binding parameters. These included the density of bonds in the adhesion area, which grew to maintain a consistent average bond density of 200 molecules/microm(2) and two-dimensional association constants of 3.1 and 630 microm(2) for bivalently and monovalently bound forms of alefacept, respectively. The maximum number of CD16 bound and the fit value of 4,350 CD2 per cell are much lower than the 40,000 CD2 per cell measured with anti-CD2 Fab. These results suggest that additional information is needed to correctly predict Alefacept-mediated bridge formation.  相似文献   

17.
Cyclodextrins (CD) are often proposed as potential vehicles in targeted drug delivery. However, if the membrane structure is disrupted by CD, then it cannot be considered to be a good drug delivery vehicle. When an extrinsic fluorescence probe is used to monitor such interactions, there are no less than three possible equilibria that can operate simultaneously: surfactant-cyclodextrin, surfactant-fluorophore and cyclodextrin-fluorophore. The fluorescence intensity/lifetime might be affected by all these and so, the results depend strongly on the fluorophore used as well as the nature of the surfactant. This aspect highlights the importance of the suitability of the fluorescence probe to be used to study complicated systems and interaction. In the present work, chlorin p6, prepared from chlorophyll from spinach leaves, has been used as the fluorescence probe to investigate the interaction between alpha-CD and beta-CD with the neutral surfactants Triton X 100 (TX 100) and cetyl trimethyl ammonium bromide (CTAB). The fluorophore is found to be a sensitive one for the study of the interaction of alpha, beta and gamma-CD with the surfactants TX 100 and CTAB. It is found that contrary to earlier reports, a complex between alpha-CD and TX 100 is formed, even though the binding constant is not very high. This observation can be obtained with chlorin p6, which does not bind to the CDs, but not with a fluorophore, which binds to the CD as well and thus complicates the situation as the binding with CD is stronger than that between TX 100 and alpha-CD as compared to that between TNS and CD.  相似文献   

18.
The group of leukocyte integrins CD11a-c/CD18 coordinate disparate adhesion reactions in the immune system through a regulated process of ligand recognition. The participation of the receptor divalent ion binding site(s) in this mechanism of ligand binding has been investigated. As compared with other divalent cations, Mn2+ ions have the unique property to dramatically stimulate the adhesive functions of the leukocyte integrin CD11b/CD18 (Mac-1), expressed on myelo-monocytic cells. This is reflected in a three- to fivefold increased early monocyte adhesion (less than 20 min) to resting, unperturbed endothelial cells, and increased association of CD11b/CD18 with its soluble ligands fibrinogen and factor X. CD11b/CD18 ligand recognition in the presence of Mn2+ ions is specific, time and concentration dependent, and inhibited by anti-CD11b mAb. At variance with Ca(2+)-containing reactions where CD11b/CD18 functions as an inducible receptor activated by adenine nucleotides or chemoattractants, Mn2+ ions induce per se a constitutive maximal ligand binding capacity of CD11b/CD18, that is not further modulated by cell stimulation. Rather than quantitative changes in surface density, Mn2+ ions increase the affinity of CD11b/CD18 for its complementary ligands up to 10-fold, as judged by Scatchard plot analysis of receptor:ligand interaction under these conditions. Furthermore, monocyte exposure to Mn2+ ions induces the expression of activation-dependent neo-antigenic epitopes on CD11b/CD18, selectively recognized by mAb 7E3. These data suggest that in addition to cell-activating stimuli, favorable engagement of divalent ion binding site(s) can provide an alternative pathway to rapidly regulate the receptor affinity of leukocyte integrins.  相似文献   

19.
The interaction of hydroxyethyl starch 130/0.4 (Voluven) with human serum albumin (HSA) has been investigated by fluorescence (steady state and synchronous), Fourier transforms infrared (FT‐IR), and circular dichroism (CD) spectroscopies. Analysis of the fluorescence quenching data of HSA by Voluven using the Stern–Volmer method revealed the formation of 1:1 ground‐state complex. Evaluation of binding parameters and binding energy indicated that the binding reaction was exothermic. On the basis of fluorescence measurements, it was concluded that electrostatic forces play a crucial role in stabilizing the complex. The binding distance was calculated by using Förster resonance energy transfer (FRET) theory. The conformational changes of HSA were obtained qualitatively as well as quantitatively using synchronous fluorescence, FT‐IR, and CD. The HSA underwent partial unfolding in the presence of Voluven.  相似文献   

20.
A Gow  W Auton  R Smith 《Biochemistry》1990,29(5):1142-1147
The binding of myelin basic protein to lysolauroylphosphatidylcholine (lysoLPC) and lysolauroylphosphatidylethanolamine was investigated at neutral pH using gel partition chromatography and equilibrium dialysis at 20 and 37 degrees C. The results show that the protein-lysolipid interactions are highly cooperative and that the free lysolipid concentration at which the binding commences is markedly influenced by both the chemical structure of the lysolipids and the temperature. The binding begins just below the critical micelle concentration for both lysolipids, which suggests that the forces governing micellization and the binding are similar. Circular dichroism (CD) spectroscopy was used to follow changes in the conformation of the protein caused by lysomyristoylphosphatidylcholine and lysoLPC. The CD results indicate that lysolipid association with the protein commences below the critical micelle concentration and continues above this concentration. Mechanisms for the lysolipid-protein interaction, which are consistent with the binding and CD data, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号