共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil nematode biodiversity in terrestrial ecosystems 总被引:5,自引:0,他引:5
A review of the literature on nematode diversity (=number of species identified) of soil inhabiting nematodes was undertaken and analysed with regard to distance from the equator, vegetation type and sampling effort. After applying a correction factor for sampling effort the results indicated that species richness was greatest in temperate broadleaf forest (61.7 species per sample) followed by cultivated soil, grassland, tropical rainforest, temperate coniferous forests and polar vegetation. The maintenance of high biodiversity in cultivated soils is unexpected but may reflect the impact of dominance in calculating many indices. Species richness was greatest between latitudes 30–40° (93.9 species per sample) and least above 70°, the mean richness near the equator (i.e. 0–10°) was 80.6 species per sample. While these data would suggest that nematode diversity is not necessarily greatest at the equator, and evidence to support a 'humped back' theory of species richness is not conclusive, they contradict the suggestion that nematode diversity increases with increased latitude. 相似文献
2.
Erik Jeppesen Jens Peder Jensen Martin SØndergaard Torben Lauridsen Frank Landkildehus 《Freshwater Biology》2000,45(2):201-218
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1). 2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish. 3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high. 4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes. 5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period. 相似文献
3.
- The geographical ranges of species are influenced by three components: spatial distribution of environmental conditions, biotic interactions and the dispersal capacity of species. The scarcity of distributional records in vast regions such as the Amazon impedes understanding of fish distribution. Predictive distribution models have emerged as a better alternative to surpass this problem, but the absence of large‐scale maps for aquatic variables has been suggested as an important limitation.
- We aimed to evaluate the use of macroclimatic variables as surrogates for local limnological variables in the Brazilian Amazon. Ordinary least squares model were used to predict the local habitat variables from climatic and geomorphological information as macroscale variables. Models for six stream‐dwelling fish were built in MaxEnt and validated using area under curve and true skill statistics (TSS).
- All local variables were predicted successfully (R2 > 0.39), and MaxEnt models had good suitability using the macroscale variables (TSS higher than 0.70). We conclude that macroscale variables can be effective surrogates for local habitat variables, at least for large‐scale analyses on poorly sampled regions such as the Brazilian Amazon.
4.
Stephen Swales Andrew W. Storey Ian D. Roderick Boga S. Figa 《Environmental Biology of Fishes》1999,54(4):389-404
Biological monitoring of the Fly River system in Papua New Guinea has shown that floodplain habitats (oxbow lakes, blocked valley lakes and seasonally inundated grassed floodplain) support diverse and abundant populations of freshwater fishes. Since monitoring first commenced in the early 1980's, a total of 66 fish species representing 33 families has been sampled, with gillnets and rotenone, from a range of sites located on the floodplains of the Fly and Strickland rivers. The fish fauna was dominated by catfishes in the families Ariidae (11 species) and Plotosidae (7 species), with aquatic invertivores being the dominant feeding group. Herring species (Nematalosa spp.) were often very abundant in the oxbow lakes, forming 66% of the total catch in all the floodplain habitats. The fish communities in the oxbow lakes and blocked valley lakes were distinctly different, with several of the smaller fish species being more abundant in the blocked valley lakes, while the oxbow lakes supported more of the larger predatory species. Catches in the oxbow lakes were also generally higher and more diverse than the blocked valley lakes or grassed floodplain sites. Since the commencement of monitoring, catches from the floodplain sites have varied considerably, both spatially and temporally. Reduced catches seen at some sites are probably associated with natural climatic factors, particularly El Niño-induced droughts and algal blooms. Introduced species and increased commercial and artisanal fishing may also be affecting stocks of native fish. Fish populations were shown to recover only slowly in lakes affected by severe drought conditions, with extensive mats of floating grasses hindering fish recolonisation. Fish stocks in a lake affected by an algal bloom recovered more quickly than stocks in lakes affected by drought. 相似文献
5.
Jorge M. Lobo Joaquín Hortal Francisco J. Cabrero-Sañudo 《Diversity & distributions》2006,12(1):111-123
This study analyses the effect of resource availability (i.e. sheep dung) on dung beetle communities in an arid region of Central Spain, both at regional and at local scales. A total of 18 sites within 600 km2 were sampled for the regional analysis and 16 sites within the 30 km2 of an Iberian municipality were sampled for the local analysis. Spatial and environmental characteristics of sampling sites were also compiled at both scales, including measures of grazing activity (livestock density at regional scale, and two counts of rabbit and sheep dung at local scale). At a regional scale, any environmental or spatial variable can help to explain the variation in abundance. However, species richness was related to summer precipitation and composition was related to elevation. At local scale, abundance is not significantly related to any of the environmental variables, but species richness was related to the local amount of sheep dung (27% of variance). The amount of dung in a 2‐km buffer around the site accounts for 27–32% of variance in abundance and 60–65% of variance in species richness. The presence of the flock with the highest sheep density explains 53% of abundance variability and 73% of species richness variance. A cluster analysis of localities identified two main groups, one characterized by a lower abundance and species richness that can be considered a nested subsample of the species‐rich group. The mean and maximum amount of sheep dung in the sites separated by less than 2 km are the only significant explanatory variables able to discriminate both groups. These results suggest that grazing intensity (and the associated increase in the amount of trophic resources) is a key factor in determining local variation in the diversity and composition of dung beetle assemblages. However, dung beetle assemblages are not spatially independent at the analysed resolution, and the amount of dung in the surroundings seems to be more important for locally collected species than the dung effectively found in the site. Although differences in the availability and quantity of trophic resources among nearby sites could be affecting the population dynamics and dispersion of dung beetles within a locality, sites with larger populations, and greater species numbers would not be able to exercise enough influence as to bring about a complete local faunistic homogenization. 相似文献
6.
Hugh D. Loxdale Belinda J. Davis Robert A. Davis 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(2):386-398
Here we present a knowledge‐data framework based on the politico‐military statement by Donald Rumsfeld (below) which has, we believe, direct relevance to ecological conservation. Ecological examples of four of the identified categories are provided with discussion of the conservation risks to a species through knowledge or data loss and movement through the categories. We show that so‐called known knowns in terms of global biodiversity are not as accurately known as thought, despite 500 years or more of world‐wide collecting and recording of eukaryotic species. In addition, as fast as new species, living or fossil, are discovered (unknown unknowns), some of which have revolutionised concepts about the biology of particular taxa, meanwhile, sadly other living species are being extirpated, or are assumed to be so (unknown knowns). These often have a high probability of ultimately being rediscovered, especially if small and/or living in remote, under‐sampled regions. Furthermore, we suggest that in some cases it may be possible to predict the existence of known species in new habitats, or the existence of unknown co‐evolved animal species (known unknowns). We discuss how technological advances (e.g. molecular markers and DNA sequencing) are inflating current estimates of biodiversity by identifying the existence of cryptic species. We believe the knowledge‐data matrix provides another tool for conservation practitioners to focus data collection on bridging knowledge gaps for more effective conservation outcomes. 相似文献
7.
《Ecohydrology》2017,10(3)
Urbanization is associated with declines in aquatic biodiversity and changes to flow regimes. This empirical research examined high temporal resolution (15 min) hydrologic records and associations with fish species richness in eight river systems in the Toronto region, Canada. The dataset spanned approximately five decades and covered the annual post‐freshet period to mid‐November. The high‐temporal resolution flow records allowed estimation of flow acceleration (a measure of the rate of change in flow) in response to rain events. Maximum rising limb event flow acceleration and skew in instantaneous runoff explained a higher proportion of variation than percent urban land use in empirical models with long‐term fish records. Models fit using only the most recent decade of records did not produce the same results, likely indicating that analyses of flow with fish diversity require sufficient range in flow conditions for the statistical signals to be detected. Historic fish data are difficult to obtain and pose analytical challenges due to bias and inconsistent collection methods. Despite the data limitations, the study results point to the need for more research into potential causal factors contributing to negative fish richness in urbanizing watercourses with periods of high flow acceleration. 相似文献
8.
Thomas R. Hrabik Ben K. Greenfield David B. Lewis Amina I. Pollard Karen A. Wilson Timothy K. Kratz 《Ecosystems》2005,8(3):301-317
We evaluated several factors influencing the taxonomic richness of macrophytes, benthic invertebrates, snails, and fish in a series of northern Wisconsin lakes. We chose the study lakes to decouple the potential effects of ionic strength of lake water and stream connection, two factors that are usually highly correlated and therefore have been confounded in previous studies. In addition, our study lakes covered a wide range in a variety of characteristics, including residential development, abundance of exotic species, nutrient concentrations, predator abundance, and lake size. Species richness within each of the four taxonomic groups was significantly positively related to ionic strength (as measured by specific conductance); we also found secondary associations with other variables, depending on the specific group of organisms. The relationship between richness and lake area was dependent on the specific conductance of the lake and the vagility of the organisms; less vagile groups of organisms showed stronger and steeper species–area relationships in low-conductivity lakes. Further, after variance owing to specific conductance was removed, the presence of stream connections was positively related to species richness for fish, snails, and macrophytes as well as familial richness in benthic invertebrates. Our results indicate that lakes with relatively more groundwater input have lower extinction rates for all four groups of taxa and that lakes with stream inlets and outlets have enhanced immigration rates for fish, snails, benthic invertebrate families, and macrophytes. These findings link processes of immigration and extinction of four groups of organisms of varying vagility to landscape-level hydrologic characteristics related to the glacial history of the region. 相似文献
9.
An understanding of factors that influence species richness of lotic insects is generally lacking. We present comparative data on aquatic insect species richness from several North American and other streams. Factors such as large sample numbers and drainage area (species area relationships) are not significant predictors of species richness across the streams we examined. We explore several hypotheses regarding the origins and maintenance of species richness using Upper Three Runs Creek (UTR), South Carolina, USA, as a reference stream. UTR has the highest species richness of any stream in the Western Hemisphere. Hypotheses examined included historical, regional and local processes such as: (1) Evolutionary time, (2) disturbance regime/environmental variability, (3) temperature/evolutionary-speed, (4) productivity, and (5) habitat heterogeneity. Of these hypotheses, we suggest that productivity and habitat heterogeneity appear to contribute most to the high species richness found in UTR. We believe that multidisciplinary analysis of other streams is necessary because without this crucial information our knowledge of, and desire to protect biodiversity in streams will be wanting. 相似文献
10.
Carlota Sánchez-Campaña Cesc Múrria Virgilio Hermoso David Sánchez-Fernández J. Manuel Tierno de Figueroa Marcos González Andrés Millán Joel Moubayed Marija Ivković Dávid Murányi Wolfram Graf Tomáš Derka Wolfram Mey Füsun Sipahiler Petr Pařil Vendula Polášková Núria Bonada 《Diversity & distributions》2023,29(8):1021-1034
11.
Renato A.M. Silvano Benedito D. do Amaral Osvaldo T. Oyakawa 《Environmental Biology of Fishes》2000,57(1):25-35
We studied spatial and temporal patterns in fish species composition and diversity at the upper Juruá River located in the west Brazilian Amazon. We collected with gillnet 822 fishes belonging to 90 species in the main Juruá River, its tributaries and the floodplain lakes during wet and dry seasons. Fish abundance and species richness were greater in the dry season. During that season, fishes may be concentrated due to the low water level, being caught more easily by gillnets. There has been a trend towards a greater fish biomass caught in lakes. This might be associated with a greater environmental stability as lakes may be less subject to large variations in water level. The fish communities differed between the two seasons and between lakes and the lotic environments (main river and tributaries). Fish species from the family Curimatidae were most abundant in the lakes, while Pimelodus spp. and Hypostomus spp. predominated in the main Juruá River. Seasonal variations in fish communities may be related to differences in the migratory behavior among fish species. Such spatial and temporal patterns influencing fish community structure at the Upper Juruá Extractive Reserve must be accounted for in management and conservation strategies. 相似文献
12.
13.
生物多样性与生态系统功能:进展与争论 总被引:50,自引:4,他引:50
生物多样性与生态系统功能的关系已成为当前人类社会面临的一个重大科学问题,生物多样性的空前丧失,促使人们开展了大量研究工作来描述物种多样性-生态系统功能关系,并试图揭示多样性与系统功能关系的内在机制,本文将多样性对生态系统功能作用机制的有关假说分为统计学与生物学两大类:前者是从统计学角度来解释观察到的多样性-系统功能模式,包括抽样效应,统计均衡效应等;而后者是基于多样性的生物学效应给出的,包括生态位互补,种间正相互作用,保险效应等,本文较为详细地介绍了该领域内有代表性的实验工作,包括“生态箱”实验,Cedar Creek草地多样性实验,微宇宙实验,欧洲草地实验,以及在这些实验结果解释上的激烈争论。 相似文献
14.
Seasonal variation of the physicochemical conditions of streams plays an important role in aquatic insect diversity and community structure. Asian tropical streams profoundly change between seasons due to the effects of monsoons. However, little is known about how these changes affect aquatic insect diversity and community structure. The objectives of this study are to examine seasonal variations of the physicochemical conditions in tropical streams in Thailand and to assess the effects of these changes on black fly community structure and diversity. Black flies were sampled and physicochemical conditions recorded at eight sites between December 2007 and December 2008. A total of 10 black fly species were found. Comparisons of the streams between seasons revealed that physical conditions related to rainfall rate were significantly different. Canonical correspondence analysis differentiated sampling sites from each season. Streams in the rainy season were faster and deeper, with higher discharge and conductivity than those of the cold and dry seasons. Species richness was significantly higher in the rainy season than in the cold and dry seasons ( F = 6.23, P = 0.004). Community structure profoundly changed between the low-flow season (cold and dry) and high-flow season. Black fly species found predominantly in the low-flow season ( Simulium siamense \"cytoform A\", S. aureohirtum ) decreased dramatically during the high-flow season. In contrast, species found at high frequency during the high-flow season ( S. nakhonense , S. angulistylum ) disappeared in the low-flow season. The study demonstrates the importance of seasonal variation of stream conditions on black fly community structure and diversity. 相似文献
15.
Tzung-Su Ding Hsiao-Wei Yuan Shu Geng Yao-Sung Lin Pei-Fen Lee 《Global Ecology and Biogeography》2005,14(4):299-306
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles. 相似文献
16.
Arthur J. Niimi Chung-Ja C. Jackson John D. Fitzsimons 《International Review of Hydrobiology》1997,82(1):47-56
Thiamine concentrations were monitored in various organisms ranging from plankton to fish in the Lake Ontario ecosystem. The low concentrations found in most samples indicated thiamine levels were not strongly influenced by the trophic status of an organism. A similar conclusion was indicated from data reported by other studies in freshwater and marine ecosystems. Thiamine is produced by microbes and microalgae, and is acquired by higher trophic level organisms through the diet. The issue of thiamine deficiency in wild fish was also examined. It was concluded that increased dietary consumption of prey containing thiaminase was an important factor that can reduce thiamine levels in higher trophic level species. 相似文献
17.
S. J. Ormerod 《Journal of Applied Ecology》2003,40(2):204-213
18.
Eva Pip 《Aquatic Ecology》1987,21(2):159-165
Aquatic macrophyte species richness (SR) was examined at 430 sites in the central Canadian region in relation to water body type, bottom substrate and 8 water chemistry parameters. SR was highest in rivers and lakes, intermediate in creeks, and lowest in ponds. The highest values occurred where granitic bedrock, highly organic substrates or sand predominated. SR was significantly inversely correlated in the study area as a whole with 7 of the water chemistry parameters; of these, total alkalinity was the most important. However, the relative importance of the respective parameters differed for various water body types. The relationship between SR and phosphorus was positive in ponds, but negative for all other water body types. Stepwise sultiple regression analysis identified phosphorus, total alkalinity and dissolved organic matter as important factors in ponds; sulphate, total alkalinity and chloride in lakes, and sulphate and phosphorus in lotic habitats. Log transformations improved the correlations for some variables. However, the water chemistry parameters examined accounted for less than half of the total variability in SR. Apparently SR depends on many different factors, including surface areaand bottom type, whose relative contributions vary with situation. 相似文献
19.
Aim To deconstruct the biodiversity pattern of the 152 waterbird species breeding in Europe to better understand its multiple causal processes. Location Continental Europe, Iceland and the British Isles. Methods We considered the orders that are typically comprised by swimming, diving or wading birds, which inhabit marshes, fens, peatlands and fresh, brackish or salt waters, including coastal waters. We used the 55 main river basins of Europe as geographical units, and searched for either chorotypes (groups of similar species distributions) or gradual replacement of species throughout the river basins. Chorotypes were recognized by applying a probabilistic classification method to the distributions. Then we used GLM to characterize the extent and the species richness of each chorotype according to energy availability (higher levels of environmental energy favouring the presence of species), climatic stress due to an excess of energy, availability of water, productivity, seasonality and surface area. Results One hundred and forty species significantly aggregate into nine chorotypes. The other 12 species, most of them marine, are centred on Great Britain, dropping away progressively on coasts further away from there. Differences in either the availability of energy or climatic stress significantly characterized the distribution of seven chorotypes comprising 90.8% of the species. Main conclusions Chorotypes are meaningful and useful to deconstruct biodiversity patterns. Our results suggest that energy is the main factor related to the biogeographical patterns of breeding waterbirds in Europe, and provide an insight into regional trends of species richness previously analysed with a habitat‐scale perspective. 相似文献
20.
The total number of insect species in the world is an important if elusive figure. We use a fresh approach to estimate global insect species richness, based on biogeographic patterns of diversity of well or better documented taxa. Estimates generated by various calculations, all variations on a theme, largely serve to substantiate suggestions that insect species are likely to number around 10 million or less. 相似文献