首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gustatory stimuli to the antennae, especially sucrose, are important for bees and are employed in learning paradigms as unconditioned stimulus. The present study identified primary antennal gustatory projections in the bee brain and determined the impact of stimulation of the antennal tip on antennal muscle activity and its plasticity. Central projections of antennal taste hairs contained axons of two morphologies projecting into the dorsal lobe, which is also the antennal motor centre. Putative mechanosensory axons arborised in a dorso-lateral area. Putative gustatory axons projected to a ventro-medial area. Bees scan gustatory and mechanical stimuli with their antennae using variable strategies but sensory input to the motor system has not been investigated in detail. Mechanical, gustatory, and electrical stimulation of the ipsilateral antennal tip were found to evoke short-latency responses in an antennal muscle, the fast flagellum flexor. Contralateral gustatory stimulation induced smaller responses with longer latency. The activity of the fast flagellum flexor was conditioned operantly by pairing high muscle activity with ipsilateral antennal sucrose stimulation. A proboscis reward was unnecessary for learning. With contralateral antennal sucrose stimulation, conditioning was unsuccessful. Thus, muscle activity induced by gustatory stimulation was important for learning success and conditioning was side-specific.  相似文献   

2.
Migrating insects use their sensory systems to acquire local and global cues about their surroundings. Previous research on tethered insects suggests that, in addition to vision and cephalic bristles, insects use antennal mechanosensory feedback to maintain their airspeeds. Owing to the large displacements of migratory insects and difficulties inherent in tracking single individuals, the roles of these sensory inputs have never been tested in freely migrating insects. We tracked individual uraniid moths (Urania fulgens) as they migrated diurnally over the Panama Canal, and measured airspeeds and orientation for individuals with either intact or amputated flagella. Consistent with prior observations that antennal input is necessary for flight control, 59 per cent of the experimental moths could not fly after flagella amputation. The remaining fraction (41%) was flight-capable and maintained its prior airspeeds despite severe reduction in antennal input. Thus, maintenance of airspeeds may not involve antennal input alone, and is probably mediated by other modalities. Moths with amputated flagella could not recover their proper migratory orientations, suggesting that antennal integrity is necessary for long-distance navigation.  相似文献   

3.
The antennal movements of eight ant species (subfamilies Ponerinae, Myrmicinae, and Formicinae) are examined by high-frequency videography. They show a wide range of antennal velocities which is generated by antennal muscles composed of particularly diverse muscle fibers. Fiber diameter, sarcomere length and histochemically assessed myosin ATPase activity suggest that some thin fibers are fairly slow, while the bulk of antennal muscle fibers show intermediate or fast properties. These morphological properties correlate with the antennal movement velocities measured for the respective species. Based on their morphology, the fibers that generate the fast antennal retraction in some trap-jaw ants appear particularly fast and comprise the shortest sarcomeres yet described (1.1 μm). Accepted: 2 January 1997  相似文献   

4.
The adult antennal lobe of Drosophila melanogaster emerges from a precursor, the larval antennal lobe. Pulse and pulse-chase labelling of dividing cells in larvae and pupae with bromodeoxyuridine confirmed previous data that some of the interneurons of the adult antennal lobe derive from a lateral neuroblast which starts to divide early in the first larval instar. However, the majority of these interneurons originate from neuroblasts that initiate mitosis at later stages, with a peak of about 10–12 pairs of dividing neuroblasts in the late third larval instar. No clustering of adult antennal lobe neurons according to their birthdates was observed. In contrast to neurons, terminal divisions of glia in the antennal lobe reach their maximum only 12 h after puparium formation.  相似文献   

5.
Neuronal architecture of the antennal lobe in Drosophila melanogaster   总被引:4,自引:0,他引:4  
Summary Computer reconstruction of the antennal lobe of Drosophila melanogaster has revealed a total of 35 glomeruli, of which 30 are located in the periphery of the lobe and 5 in its center. Several prominent glomeruli are recognizable by their location, size, and shape; others are identifiable only by their positions relative to prominent glomeruli. No obvious sexual dimorphism of the glomerular architecture was observed. Golgi impregnations revealed: (1) Five of the glomeruli are exclusive targets for ipsilateral antennal input, whereas all others receive afferents from both antennae. Unilateral amputation of the third antennal segment led to a loss of about 1000 fibers in the antennal commissure. Hence, about 5/6 of the approximately 1200 antennal afferents per side have a process that extends into the contralateral lobe. (2) Afferents from maxillary palps (most likely from basiconic sensilla) project into both ipsi-and contralateral antennal lobes, yet their target glomeruli are apparently not the same as those of antennal basiconic sensilla. (3) Afferents in the antennal lobe may also stem from pharyngeal sensilla. (4) The most prominent types of interneurons with arborizations in the antennal lobe are: (i) local interneurons ramifying in the entire lobe, (ii) unilateral relay interneurons that extend from single glomeruli into the calyx and the lateral protocerebrum (LPR), (iii) unilateral interneurons that connect several glomeruli with the LPR only, (iv) bilateral interneurons that link a small number of glomeruli in both antennal lobes with the calyx and LPR, (v) giant bilateral interneurons characterized by extensive ramifications in both antennal lobes and the posterior brain and a cell body situated in the midline of the suboesophageal ganglion, and (vi) a unilateral interneuron with extensive arborization in one antennal lobe and the posterior brain and a process that extends into the thorax. These structural results are discussed in the context of the available functional and behavioral data.Abbreviations AC antennal commissure - AMMC antennal mechanosensory and motor center - iACT, mACT, oACT inner/middle/outer antenno-cerebral tract - bACTI, uACTI bilateral/unilateral ACT relay interneuron - AN antennal nerve - AST antenno-suboesophageal tract - FAI fine arborization relay interneuron - GSI giant symmetric relay interneuron - LI local interneuron - LPR lateral protocerebrum - SOG suboesophageal ganglion - TI thoracic relay interneuron - bVI bilateral V-relay interneuron  相似文献   

6.
Structure of antenna segments and ultrastructure of antennal sensillae in representatives of 28 caddisfly families from both modern suborders were studied by electron and light microscopy methods. On Trichoptera antennae, 16 types of sensillae were found, some of them being described for the first time. Morphological peculiarities of cuticular ultrastructures on the antennal surface demonstrate essential differences in structure both at the family level and at the lower taxonomic levels. Specialized sensory fields structurally different from the remaining antennal surface were revealed on antennal flagellae in representatives of the Phryganeina suborder. A new classification of sensillae based on the structure of their cuticular section is proposed.  相似文献   

7.
Antennal cropping, a behavior inferred to exist because queens and kings have shorter antennae than fresh alates, is widespread in termites. However, the proximate and ultimate mechanisms underlying this phenomenon remain unclear. We studied the occurrence of antennal cropping in queens and kings of the dry-wood termite Neotermes koshunensis (Kalotermitidae). Observation of the antennal tip structure with scanning electron microscopy and the occurrence of antennal cropping in new kings and queens reared in isolation indicated that self-cropping is an important proximate mechanism. Previous studies inferred that antennal cropping may play a key role in the life-history of alates at the colony-founding stage. However, we also found antennal cropping in adultoid reproductives (secondary reproductives) that had not experienced a colony founding. We propose a new hypothesis that antennal cropping is important for individuals in regulating their physiology when they change from the non-reproducing to the reproducing phase.  相似文献   

8.
蚜虫触角感受器结构及功能研究进展   总被引:1,自引:0,他引:1  
赵立静  班丽萍 《昆虫知识》2011,48(4):1077-1086
本文综述了蚜虫触角上感受器在形态和生理功能方面的研究进展;介绍了常用的触角感受器研究方法;文中对分布于蚜虫触角上的感受器种类进行了阐述,描述了各类感受器的外部形态特征,及其内部超微结构.此外,探讨了不同类型的感受器的生理功能,及其在分子水平上的化学感受接收的机制.  相似文献   

9.
Male moths rely on female sex pheromones to find their mating partner and on plant volatiles for the detection of food sources. In the noctuid moth, Agrotis ipsilon, plasticity of central sex pheromone processing has been shown previously in the antennal lobe. The sensitivity of antennal lobe interneurons increases with age and juvenile hormone level. Here we investigated whether age affects not only central sex pheromone processing, but also central processing of plant volatiles in A. ipsilon males. Intracellular recordings of antennal lobe interneurons were made in males of different ages after stimulation of the antennae with seven different plant volatiles. The sensitivity and specificity of the antennal lobe interneurons for any of the plant volatiles tested did not change with age. From these results we conclude that the sensitivity of the antennal lobe interneurons involved in central plant volatile processing is age-independent and that the action of juvenile hormone is specific for central sex pheromone processing in A. ipsilon males.  相似文献   

10.
Axons navigate to their targets by detecting signals within the environment through which they are growing. The surfaces of tracheae, which are prominent features of the insect body plan, could be detected as favorable pathways for sensory axons growing toward the brain. The pattern of the tracheal investment of the adult antennal lobe of the moth Manduca sexta suggested two specific possibilities for interaction between tracheae and axons during development: that tracheae might be involved in guiding olfactory receptor axons to their target region of the brain, the antennal lobe; and that tracheae could provide an address system within the lobe that defines the sites of glomeruli, which are olfactory-axon target areas within the lobe. To determine whether tracheae contribute to development of the primary olfactory pathway, the distribution of tracheae in the adult and developing antennal lobes was examined with both confocal and electron microscopes. During the major stages in which axons are growing into the antennal lobe and in which glomeruli are forming, the tracheal investment of the nerve and lobe was found to be minimal. Tracheae thus cannot serve as axon guides or as local address sites for newly forming glomeruli during the initial targeting of receptors onto the antennal lobe.  相似文献   

11.
In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.  相似文献   

12.
Axon-axon interactions have been implicated in neural circuit assembly, but the underlying mechanisms are poorly understood. Here, we show that in the Drosophila antennal lobe, early-arriving axons of olfactory receptor neurons (ORNs) from the antenna are required for the proper targeting of late-arriving ORN axons from the maxillary palp (MP). Semaphorin-1a is required for targeting of all MP but only half of the antennal ORN classes examined. Sema-1a acts nonautonomously to control ORN axon-axon interactions, in contrast to its cell-autonomous function in olfactory projection neurons. Phenotypic and genetic interaction analyses implicate PlexinA as the Sema-1a receptor in ORN targeting. Sema-1a on antennal ORN axons is required for correct targeting of MP axons within the antennal lobe, while interactions amongst MP axons facilitate their entry into the antennal lobe. We propose that Sema-1a/PlexinA-mediated repulsion provides a mechanism by which early-arriving ORN axons constrain the target choices of late-arriving axons.  相似文献   

13.
Honeybees learn and discriminate excellently between different surface structures and different forms of objects, which they scan with their antennae. The sensory plate on the antennal tip plays a key role in the perception of mechanosensory and gustatory information. It is densely covered with small tactile hairs and carries a few large taste hairs. Both types of sensilla contain a mechanoreceptor, which is involved in the antennal scanning of an object. Our experiments test the roles of the mechanoreceptors on the antennal tip in tactile antennal learning and discrimination. Joints between head capsule and scapus and between scapus and pedicellus enable the bee to perform three-dimensional movements when they scan an object. The role of these joints in tactile antennal learning and discrimination is studied in separate experiments. The mechanoreceptors on the antennal tip were decisive for surface discrimination, but not for tactile acquisition or discrimination of shapes. When the scapus–pedicellus joint or the headcapsule–scapus joint was fixed on both antennae, tactile learning was still apparent but surface discrimination was abolished. Fixing both scapi to the head capsule reduced tactile acquisition.  相似文献   

14.
昆虫触角叶的结构   总被引:1,自引:0,他引:1  
赵新成  翟卿  王桂荣 《昆虫学报》2015,58(2):190-209
触角叶是昆虫脑内初级嗅觉中心,通过触角神经与触角联系。触角叶主要由嗅觉受体神经元、局域中间神经元、投射神经元和远心神经元构成。这些神经元的形态多样,其形态变化与其功能和昆虫嗅觉行为相关。这些神经元在触角叶内交织形成神经纤维网,在突触联系紧密的地方形成纤维球,纤维球通常排列在触角叶外周。通常,昆虫触角叶内纤维球的数量、大小和位置相对固定,并且几乎每个小球都可以被识别和命名。不同种类、性别和品级的昆虫中,纤维球的数量、大小和排列方式各不相同。触角叶结构神经元组成和纤维球的多样性,与各种昆虫嗅觉行为的特异性相对应。  相似文献   

15.
The insect antennal lobe is the first brain structure to process olfactory information. Like the vertebrate olfactory bulb the antennal lobe is substructured in olfactory glomeruli. In insects, glomeruli can be morphologically identified, and have characteristic olfactory response profiles. Local neurons interconnect glomeruli, and output (projection) neurons project to higher-order brain centres. The relationship between their elaborate morphology and their physiology is not understood. We recorded electrophysiologically from antennal lobe neurons, and iontophoretically injected a calcium-sensitive dye. We then measured their spatio-temporal calcium responses to a variety of odours. Finally, we confocally reconstructed the neurons, and identified the innervated glomeruli. An increase or decrease in spiking frequency corresponded to an intracellular calcium increase or decrease in the cell. While intracellular recordings generally lasted between 10 and 30 min, calcium imaging was stable for up to 2 h, allowing a more detailed physiological analysis. The responses indicate that heterogeneous local neurons get input in the glomerulus in which they branch most strongly. In many cases, the physiological response properties of the cells corresponded to the known response profile of the innervated glomerulus. In other words, the large variety of response profiles generally found when comparing antennal lobe neurons is reduced to a more predictable response profile when the innervated glomerulus is known.Abbreviations ACT antenno-cerebralis-tract - AL antennal lobe - AP action potential - l-ACT lateral ACT - LN local neuron - LPL lateral protocerebral lobe - m-ACT medial ACT - MB mushroom body - OSN olfactory sensory neuron - PN projection neuron - T1 tract 1 of the antennal nerve  相似文献   

16.
As a first step towards understanding the functional role of neuroactive substances in the first olfactory center of the male silkworm moth Bombyx mori, we carried out an immunocytochemical identification of antennal lobe neurons. Antibodies against gamma-aminobutyric acid (GABA), FMRFamide, serotonin, tyramine and histamine were applied to detect their existence in the antennal lobe. In the present immunocytochemical study, we clarified four antenno-cerebral tracts from their origin and projection pathways to the protocerebrum, and revealed the following immunoreactive cellular organization in the antennal lobe. 1) Local interneurons with cell bodies in the lateral cell cluster showed GABA, FMRFamide and tyramine immunoreactivity. 2) Projection neurons passing through the middle antenno-cerebral tract with cell bodies in the lateral cell cluster showed GABA and FMRFamide immunoreactivity. Projection neurons passing through the outer antenno-cerebral tract with cell bodies in the lateral cell cluster showed FMRFamide immunoreactivity. 3) Centrifugal neurons passing through the inner antenno-cerebral tract b with cell bodies located outside the antennal lobe showed serotonin and tyramine immunoreactivity. Our results revealed basic distribution patterns of neuroactive substances in the antennal lobe and indicated that each projection pathway from the antennal lobe to the protocerebrum contains specific combination of neuroactive substances.  相似文献   

17.
Effects of 20-hydroxyecdysone and serotonin on the morphological development and the survival of antennal lobe neurons from day-2 pupal brains of the silk moth Bombyx mori were investigated in vitro. Four morphologically distinct neuronal types could be identified in the cultured antennal lobe neurons: unipolar, bipolar, multi-polar and projection neurons. Antennal lobe neurons in culture with 20-hydroxyecdysone and serotonin showed different patterns of the morphological development from those described in Manduca sexta. Projection neurons extend their neurites remarkably by 20-hydroxyecdysone in B. mori, but there is no extension from antennal lobe neurons in M. sexta. Multi-polar neurons conspicuously increase only formation of new branches from their primary neurites by serotonin in B. mori, but there are both extension and branching of the neurites in M. sexta. On day-5, antennal lobe neurons in lower titers of 20-hydroxyecdysone had significantly higher survival rates than those in higher titers. Neurons cultured for 7 days at different levels of 20-hydroxyecdysone generally showed significantly lower survival rates than neurons cultured for 5 days under the same conditions.  相似文献   

18.
Gascuel J  Masson C 《Tissue & cell》1991,23(3):341-355
This paper describes the ultrastructural organization of the honeybee antennal lobe, including the distribution of synapses within the antennal lobe neuropile and the distribution of the afferent fibres in the antennal nerve and its afferent tracts. We show that: 1) The antennal nerve and tracts T3-T6 are composed of a heterogeneous population of fibres, with respect to their diameters, whereas two afferent tracts (T1 and T2) are composed of fibres of almost homogeneous diameter. 2) Synapses are mainly localized in the glomeruli with a higher frequency in the cortical layer than in the core of the glomerulus. Nevertheless a few synapses are found in the coarse neuropile. 3) Reciprocal synapses have been identified in the cortical layer. At the ultrastructural level, the organization of the bee antennal lobe was largely unknown and these results bring the anatomical background needed in order to carry out a developmental study related to the bee antennal lobe structures.  相似文献   

19.
Major advances have been made during the past two years in understanding how honeybees process olfactory input at the level of their first brain structure dealing with odours, the antennal lobe (the insect analogue of the mammalian olfactory bulb). It is now possible to map physiological responses to morphologically identified olfactory glomeruli, allowing for the creation of a functional atlas of the antennal lobe. Furthermore, the measurement of odour-evoked activity patterns has now been combined with studies of appetitive odour learning. The results show that both genetically determined components and learning-related plasticity shape olfactory processing in the antennal lobe.  相似文献   

20.
The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory mechanisms to perform efficient foraging activities than do the Acc worker bees. These data decipher the mechanisms of the western and eastern drone and worker bees acting in response to their different olfactory system in their distinct ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号