首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Xanthine oxidase and purines have recently been detected in the circulation during acute viral infection and following hepatotoxicity and shock. Reactions of xanthine oxidase-generated oxidants with human plasma or bovine serum albumin (BSA) and egg phosphatidylcholine (PC) liposomes have been studied by measuring protein sulfhydryl oxidation and two markers of free radical-mediated lipid peroxidation, thiobarbituric acid reactive substances (TBARS) and conjugated dienes. Plasma incubated with 5 mU/ml xanthine oxidase (XO) and 0.5 mM hypoxanthine (Hx) for 2 h at 37 degrees C had 25-53% oxidation of sulfhydryl groups, with greater than 80% of the oxidation occurring during the first 20 min of the reaction. Concentrations of BSA similar to those present in serum, when exposed to XO/Hx-mediated oxidative stress, showed an even greater decrease in sulfhydryl concentration than that of plasma. No significant increase in plasma TBARS and conjugated dienes was observed during the 2-h incubation period in the presence of XO. Egg PC liposomes, suspended to a plasma phospholipid-equivalent concentration, showed a minor increase in TBARS and conjugated dienes under similar XO/Hx incubation conditions. In the presence of 0.23 mM BSA, lipid peroxidation was completely inhibited. A similar inhibition of lipid peroxidation was induced by cysteine but not by uric acid. Electrophoretic and arsenite-mediated sulfur reduction analysis revealed that BSA was oxidized beyond the disulfide form, with sulfenic acid formed during the initial period of oxidation. Protein sulfhydryls served as sacrificial antioxidants, preventing plasma lipid peroxidation, as well as being targets for oxidative damage. Plasma protein thiol oxidation was determined to be a more sensitive and specific indication of oxidant stress to the vascular compartment than assessment of lipid oxidation byproducts.  相似文献   

2.

The conditions for producing phosphatidylcholine liposomes containing lipoic acid and carnosine together were determined. The obtained liposomes are 180–250-nm spherical particles with an efficiency of lipoic acid inclusion of 50–70% (for carnosine, 17–33%). Based on the model of the oxidation of phosphatidylcholine by hydrogen peroxide, an antioxidant effect of carnosine, lipoic acid or lipoic acid with carnosine together was demonstrated; it consisted in inhibition of lipid peroxidation process, which was manifested in a decrease in the formation of lipid peroxidation products that react with thiobarbituric acid. It was established that lipoic acid (5 mM) and carnosine (0.1–10 mM) in liposomes exhibit an antioxidant effect. At the same time, it was demonstrated that the content of the appropriate lipid peroxidation products in liposomes with antioxidants (lipoic acid + carnosine) was 15 times lower than in control liposomes (without antioxidants). The effect of the obtained liposomal drugs on the platelet aggregation induced by arachidonic acid was evaluated. It was found that the liposomal drug containing lipoic acid (1.5 mM) and carnosine (2.1 mM) inhibited platelet aggregation by 50–55% relative to the control (platelets and arachidonic acid), while liposomes without antioxidants and water-soluble forms of carnosine and lipoic acid had almost no effect on platelet aggregation caused by arachidonic acid.

  相似文献   

3.
Brain homogenate was used as a model system to study antioxidant properties of several natural and synthetic antioxidants under oxidative stress. Oxidative stress was induced by Fe/ascorbate system and lipid peroxidation as well as protein modification were studied. Thiobarbituric acid reactive substances (TBARS) were used as a marker of lipid peroxidation. The preventive effect concerning lipid peroxidation decreased in the order: buthylated hydroxytoluene (BHT) (3.5), stobadine (ST) (35), serotonin (54), trolox (98), U 74389G (160), melatonin (3100), (the numbers in the brackets represent IC50 in micromol/l). Methylprednisolone had no effect, and spin traps interfered with TBARS determination. Concerning creatine kinase (CK) activity as a selected marker of oxidative modification of proteins, the preventive effect of antioxidants (30 micromol/l) decreased in the order: BHT (30), trolox (75), stobadine (ST) (77), alpha-phenyl-N-tert-buthylnitrone (PBN) (87), sodium salt of N-tert-buthyl-C-(phenyl-2-sulfone) nitrone (SPBN) (90), (the numbers in the brackets represent the loss of CK activity in percentages, when 100% was the loss of CK activity in the absence of any antioxidant). The nonglucocorticoid steroid U 74389G, methylprednisolone and serotonin had no preventive effects, while melatonin had antioxidant effect only in a higher concentration (1 mmol/l).  相似文献   

4.
Relation of lipid peroxidation to loss of cations trapped in liposomes   总被引:2,自引:0,他引:2  
Lipid peroxidation and alterations in cation loss have been induced in liposomes by ferrous ion, ascorbic acid, reduced and oxidized glutathione, and gamma radiation. Modifications of these effects by tocopherol and 2,6-di-tert-butyl-4-methylphenol (BHT) were studied when these antioxidants were either incorporated in the membrane or were added to already formed liposomes prior to the addition of the chemical agent or to irradiation. Lipid peroxidation, as indicated by the thiobarbituric acid test for malonic dialdehyde, did not correlate with alterations in cation loss. The largest amounts of lipid peroxidation induced by ascorbic acid and glutathione were associated with decreased cation loss. Inhibition of Fe(2+)- and radiation-induced lipid peroxidation by antioxidants did not inhibit the associated increase in cation loss. Tocopherol was a more effective antioxidant than BHT when it was incorporated in the membrane, whereas BHT was more effective when it was added to the liposomes after formation.  相似文献   

5.
The antioxidant activities of RRR-vitamin E (VE), all-rac-vitamin E (all-rac-VE), trolox, RRR-vitamin E acetate (VEA), all-rac-vitamin E phosphate (VEP) and RRR-vitamin E succinate (VES) were compared. In this study, the rank order in the inhibition of lipid peroxidation (LPO) of VE and its derivatives was trolox>VE approximately all-rac-VE>VEA>VES. VE and trolox inhibited LPO in non-heated and heated rat liver microsomes. It has generally been accepted that this is due to scavenging of free radicals by these antioxidants, and during this protection the antioxidants are oxidized. VEA and VES have to be converted into VE by esterases to obtain antioxidant activity against LPO. VEP, however, had a potent antioxidant effect of its own without conversion to VE. In contrast to VE, VEP is not consumed during this protection. Of the compounds tested, VEP is the most potent in induction of hemolysis of erythrocytes. EPR experiments using the spin label 16-doxylstearic acid showed that VEP reduces membrane fluidity, in contrast to VE. This indicates that VEP acts as a detergent and forms a barrier that might inhibit the transfer of radicals from one polyunsaturated fatty acid to another. This new mechanism may form the basis for a new class of antioxidants.  相似文献   

6.
SUMMARY

The influence of 3 thiol-containing compounds, bovine serum albumin (fatty acid free: BSA), glutathione (GSH) and yeast alcohol dehydrogenase (YADH) on lipid peroxidation in multilamellar liposomes, prepared from ox-brain phospholipid, was investigated. Thiol-compounds were added either before liposome formation, or after liposome formation; and their effects compared to a positive control. Bovine serum albumin (BSA), an acidic hydrophilic protein, displays a small, concentration dependent, antioxidant effect when added to preformed liposomes. A much larger antioxidant effect was observed when the BSA was entrapped inside the liposome, by adding BSA just prior to liposome preparation. In contrast, a Zn2+ containing redox enzyme, YADH, a basic hydrophobic membrane-associating protein, displays a large pro-oxidant effect at much lower concentrations especially when entrapped inside the liposome. This was observed also with GSH; but per mole of -SH, YADH was about 18 times as powerful a pro-oxidant perhaps because of structural changes to the membrane. Oxidized glutathione and N-acetylcysteine were also pro-oxidant (cysteine and cystine showed little effect). Formation of thiyl radicals may occur in the presence of iron ions with these pro-oxidant sulphur-containing compounds. Partial protection against lipid peroxidation was observed with EDTA, desferrioxamine and protoporphyrin (IX), potent iron-chelating agents.  相似文献   

7.
Summary

Exposure of human plasma to gas-phase cigarette smoke (CS) causes loss of human plasma antioxidants, protein modification (Frei et al, Biochem J, 1991 277:133–138; Reznick et al, Biochem J, 1992 286: 607–611) and a minimal amount of lipid oxidation. Ascorbic acid was found to prevent CS-induced lipid peroxidation and glutathione (GSH) partially protected against protein modification, as determined by loss of protein -SH groups and by increases in carbonyl content as a measure of protein oxidation. In the present study we demonstrate that dihydrolipoic acid (0.25–1.0 mM) decreases CS-induced protein carbonyls, α-tocopherol loss, and lipid hydroperoxide formation in plasma. In contrast GSH (1 mM) failed to influence CS-induced loss of α-tocopherol, and was 50% as effective as dihydrolipoate in protecting against CS-induced protein carbonyl formation. On the other hand, lipoic acid (oxidized form of dihydrolipoic acid) and oxidized glutathione (GSSG) had minimal effect in protecting against the CS-induced protein modifications. These findings demonstrate that low molecular weight thiols are capable of modifying the effect of gas-phase CS on biological fluids. Dihydrolipoate appears to be particularly useful in that it was shown to conserve ascorbic acid and α-tocopherol, i.e. supporting the antioxidant network concept in protection against protein and lipid oxidation.  相似文献   

8.
The oxidation of low density lipoprotein (LDL) by lipoxygenase has been implicated in the pathogenesis of atherosclerosis. It has been known that lipoxygenase-mediated lipid peroxidation proceeds in general via regio-, stereo- and enantio-specific mechanisms, but that it is sometimes accompanied by a share of random hydroperoxides as side reaction products. In this study we investigated the oxidation of various substrates (linoleic acid, methyl linoleate, phosphatidylcholine, isolated LDL, and human plasma) by the arachidonate 15-lipoxygenases from rabbit reticulocytes and soybeans aiming at elucidating the effects of substrate, lipoxygenase and reaction milieu on the contribution and mechanism of random oxidation and also the effect of antioxidant. The specific character of the rabbit 15-lipoxygenase reaction was confirmed under all conditions employed here. However, the specificity by soybean lipoxygenase was markedly dependent on the conditions. When phosphatidylcholine liposomes and LDL were oxygenated by soybean lipoxygenase, the product pattern was found to be exclusively regio-, stereo-, and enantio-random. When free linoleic acid was incorporated into PC liposomes and oxidized by soybean lipoxygenase, the free acid was specifically oxygenated, whereas esterified linoleate gave random oxidation products exclusively. Radical-scavenging antioxidants such as alpha-tocopherol, ascorbic acid and 2-carboxy-2,5,7,8-tetramethyl-6-chromanol selectively inhibited the random oxidation but did not influence specific product formation. It is assumed that the random reaction products originate from free radical intermediates, which have escaped the active site of the enzyme and thus may be accessible to radical scavengers. These data indicate that the specificity of lipoxygenase-catalyzed lipid oxidation and the inhibitory effects of antioxidants depend on the physico-chemical state of the substrate and type of lipoxygenase and that they may change completely depending on the conditions.  相似文献   

9.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

10.
Peroxidation of lipids, particularly polyunsaturated fatty acid residues (PUFA) of phospholipids and cholesterol esters, is a process of marked implications: it shortens the shelf-life of food and drugs, it causes fragmentation of DNA, it damages cellular membranes and it promotes the genesis of many human diseases. Much effort is therefore devoted to a search for "potent antioxidants", both synthetic and from natural sources, mostly plants. This, in turn, requires a reliable, simple, preferably high throughput assay of the activity of alleged antioxidants. The most commonly used assays are based on measurements of the total antioxidant capacity (TAC) of a solution, as evaluated either by determining the rate of oxidation of the antioxidant or by measuring the protection of an easily determined indicator against oxidation by the antioxidants. The commonly used assays utilized for ranking antioxidants share three common problems: (i) They usually evaluate the effects of those antioxidants that quench free radicals, which constitute only a part of the body's antioxidative network, in which enzymes play the central role. (ii) Both the capacity and potency of antioxidants, as obtained by various methods, do not necessarily correlate with each other. (iii) Most estimates are based on methods conducted in solution and are therefore not necessarily relevant to processes that occur at the lipid-water interfaces in both membranes and micro emulsions (e.g. lipoproteins). Given this "state of art", many researchers, including us, try to develop a method based on the formation of hydroperoxides (LOOH) upon peroxidation of PUFA in lipoproteins or in model membranes, such as liposomes. In these systems, as well as in lipoproteins, the most apparent effect of antioxidants is prolongation of the lag time preceding the propagation of a free radical chain reaction. In fact, under certain conditions both water soluble antioxidants (e.g. vitamin C and urate) and the lipid soluble antioxidant tocopherol (vitamin E), promote or even induce peroxidation. Based on the published data, including our results, we conclude that terms such as 'antioxidative capacity' or 'antioxidative potency' are context-dependent. Furthermore, criteria of the efficacy of antioxidants based on oxidation in solution are not necessarily relevant to the effects of antioxidants on peroxidation in biological systems or model lipid assemblies, because the latter processes occur at water/lipid interfaces. We think that evaluation of antioxidants requires kinetic studies of the biomarker used and that the most relevant characteristic of 'oxidative stress' in the biological context is the kinetics of ex vivo peroxidation of lipids. We therefore propose studying the kinetics of lipid-peroxidation in the absence of the studied antioxidant and in its presence at different antioxidant concentrations. These protocols mean that antioxidants are assayed by methods commonly used to evaluate oxidative stress. The advantage of such evaluation is that it enables quantization of the antioxidants' efficacy in a model of relevance to biological systems. In view of the sensitivity of the lag time preceding peroxidation, we propose studying how much antioxidant is required to double the lag observed prior to rapid peroxidation. The latter quantity (C(2lag)) can be used to express the strength of antioxidants in the relevant system (e.g. LDL, serum or liposomes).  相似文献   

11.
Dysfunction of sarcoplasmic reticulum (SR) Ca2+-ATPase induced by oxidative stress may be a contributing factor to the development of serious age related diseases. Incubation of sarcoplasmic reticulum (SR) vesicles of rabbit skeletal muscles with Fe2+/H2O2/ascorbate decreased the SH group content of SR approximately to 35% and Ca2+-ATPase activity to 50% of control not oxidized sample. Protein carbonyls increased twofold, lipid peroxidation was also significantly elevated. The antioxidant effects of trolox, the pyridoindole derivative stobadine and of the standardized extracts from bark of Pinus Pinaster PycnogenolR (Pyc) and from leaves of Ginkgo biloba (EGb 761) were studied on oxidatively injured SR. All antioxidants exerted preventive effects against the oxidized lipids and protein SH groups of SR vesicles. Trolox and stobadine did not influence protein carbonyl formation, while flavonoid extracts prevented carbonyl generation, probably by binding to protein. The preventive effects of the antioxidants studied on lipids and protein SH groups were however not associated with protection of Ca2+-ATPase activity. Stobadine and trolox exerted no effect on enzyme activity, Pyc and EGb 761 enhanced the inhibitory effect of Ca2+-ATPase activity in oxidatively injured SR. Concluding, under the conditions of oxidative stress induced by Fe2+/H2O2/ascorbate against SR of rabbit skeletal muscle, the agents studied demonstrated antioxidant effects yet failed to protect Ca2+-ATPase activity.  相似文献   

12.
Metalloporphyrins are potent inhibitors of lipid peroxidation   总被引:4,自引:0,他引:4  
The objectives of these studies were to determine whether metalloporphyrins could inhibit lipid peroxidation, characterize factors that influence their potency and compare their potency to prototypical antioxidants. Lipid peroxidation was initiated with iron and ascorbate in rat brain homogenates and the formation of thiobarbituric acid reactive species was used as an index of lipid peroxidation. Metalloporphyrins were found to be a novel and potent class of lipid peroxidation inhibitors. Inhibition of lipid peroxidation by metalloporphyrins was dependent on the transition metal ligated to the porphyrin, indicating that metal centered redox chemistry was important to the mechanism of their antioxidant activities. Manganese porphyrins with the highest superoxide dismutase (SOD) activities, MnOBTM-4-PyP and MnTM-2-PyP (charges are omitted throughout text for clarity), were the most potent inhibitors of lipid peroxidation with calculated IC50s of 1.3 and 1.0 microM, respectively. These manganese porphyrins were 2 orders of magnitude more potent than either trolox (IC50 = 204 microM) or rutin (IC50 = 112 microM). The potencies of the manganese porphyrins were related not only to their redox potentials and SOD activities, but also to other factors that may contribute to their ability to act as electron acceptors. The broad array of antioxidant activities possessed by metalloporphyrins make them attractive therapeutic agents in disease states that involve the overproduction of reactive oxygen species.  相似文献   

13.
Reactive oxygen species (ROS) could be important causative agents of a number of human diseases, including cancer. Thus, antioxidants, which control the oxidative stress state, represent a major line of defense regulating overall health. Human plasma contains many different nonenzymatic antioxidants. Because of their number, it is difficult to measure each of these different antioxidants separately. In addition, the antioxidant status in human plasma is dynamic and may be affected by many factors. Thus, the relationship between nonenzymatic antioxidant capacity of plasma and levels of well-known markers of oxidative stress (oxidized proteins, lipid hydroperoxides, decreases in thiol groups) better reflects health status. The present study considers antioxidant capacity and oxidative stress in human plasma of patients with colon cancer or precancerous lesions, as well as before and after surgical removal of tumors and/or chemo/radiation therapy. Healthy blood donors were used as controls. Colon cancer patients demonstrated a significant decrease in nonproteic antioxidant status and in total thiol groups with respect to healthy controls, whereas oxidized proteins and lipid hydroperoxide levels were significantly increased. In patients with precancerous lesions, the only unmodified parameter was the thiol group level. After surgery, the levels of oxidized proteins, lipid hydroperoxides, and total thiol groups were restored to those seen in healthy subjects, whereas nonproteic antioxidant capacity remained unmodified from that determined before surgery. Conversely, chemo/radiation therapy increased both nonproteic antioxidant capacity and levels of oxidized proteins and lipid hydroperoxides and significantly decreased total thiol groups. These results further support the hypothesis that oxidative stress correlates to the risk of some forms of cancer, not only in the initial stages but also during progression.  相似文献   

14.
Antioxidant and antiradical activities of L-carnitine   总被引:2,自引:0,他引:2  
Gülçin I 《Life sciences》2006,78(8):803-811
L-carnitine plays an important regulatory role in the mitochondrial transport of long-chain free fatty acids. In this study, the antioxidant activity of L-carnitine was investigated as in vitro. The antioxidant properties of the L-carnitine were evaluated by using different antioxidant assays such as 1, 1-diphenyl-2-picryl-hydrazyl free radical (DPPH.) scavenging, total antioxidant activity, reducing power, superoxide anion radical scavenging, hydrogen peroxide scavenging and metal chelating activities. Total antioxidant activity was measured according to ferric thiocyanate method. alpha-tocopherol and trolox, a water-soluble analogue of tocopherol, were used as the reference antioxidant compounds. At the concentrations of 15, 30 and 45 microg/mL, l-carnitine showed 94.6%, 95.4% and 97.1% inhibition on lipid peroxidation of linoleic acid emulsion, respectively. On the other hand, 45 microg/mL of standard antioxidant such as alpha-tocopherol and trolox indicated an inhibition of 88.8% and 86.2% on peroxidation of linoleic acid emulsion, respectively. In addition, L-carnitine had an effective DPPH. scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, total reducing power and metal chelating on ferrous ions activities. Also, those various antioxidant activities were compared to alpha-tocopherol and trolox as references antioxidants.  相似文献   

15.
Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipid peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation.  相似文献   

16.
The aim of this work was to evaluate the role of lipid peroxidation and glutathione on liver damage induced by 7-day biliary obstruction in the rat. Male Wistar rats were bile-duct-ligated and divided in groups of 10 animals. Groups received vitamin E (400 IU/rat, p.o., daily) or trolox (50 mg/kg, p.o., daily) or both. Lipid peroxidation increased significantly in the livers of bile-duct-ligated rats. Vitamin E and trolox prevented lipid peroxidation. GSH was oxidized in the BDL group and the GSH/GSSG ratio decreased as a consequence. However, total glutathione content increased in liver and blood indicating a possible induction in de novo synthesis of GSH. Antioxidants preserved the normal GSH/GSSG ratio. Despite the observation that antioxidants verted lipid peroxidation and oxidation of GSH, liver injury (as assessed by serum enzyme activities, bilirubin concentration, liver glycogen content and histology) was not affected by the treatments. These results suggest that drugs that inhibit lipid peroxidation and oxidation of glutathione have no effect on conventional biochemical markers of liver injury and on liver histology of bile-duct-ligated rats for 7 days. It seems more likely that the detergent action of bile salts is responsible for solubilization of plasma membranes and cell death, which in turn may lead to oxidative stress, GSH oxidation and lipid peroxidation.  相似文献   

17.
This study was designed to evaluate the effect of ethanol on the peroxidation of human low-density lipoprotein (LDL) initiated by oxygen free radicals (O(2)(.-) and (.)OH in the absence of ethanol; O(2)(.-) and ethanol-derived peroxyl radicals, RO(2)(.), in the presence of ethanol) generated by gamma radiolysis. Initial radiolytic yields as determined by several markers of lipid peroxidation [i.e. decrease in endogenous antioxidants alpha-tocopherol and beta-carotene, formation of conjugated dienes and of thiobarbituric acid-reactive substances (TBARS)] were determined in 3 g liter(-1) LDLs (expressed as total LDL concentration) in the absence of ethanol or its presence at six different concentrations (0.42-17 x 10(-2) mol liter(-1)). Ethanol acted as an antioxidant by decreasing the rate of consumption of LDL endogenous antioxidants and the yields of formation of lipid peroxidation products, and by delaying the onset of the propagation phase for conjugated dienes and TBARS. With regard to the different markers studied, except for alpha-tocopherol and beta-carotene consumption, the effect of ethanol did not appear to be dependent on its concentration. Indeed, (.)OH were scavenged by ethanol at the lowest ethanol concentration (0.42 x 10(-2) mol liter(-1)), leading to RO(2)(.). These RO(2)(.) resulted in lower radiation-induced yields related to endogenous antioxidant consumption or to formation of lipid peroxidation products (for example, approximately 10% of RO(2)(.) oxidized LDLs from TBARS). Thus, under our in vitro conditions, ethanol behaved as an antioxidant when added to the LDL solutions. This should be taken into account in the reported antioxidant activity of wine. This is also of interest when lipophilic compounds have to be added as ethanolic solutions to LDLs to evaluate in vitro their antioxidant activity toward LDL peroxidation.  相似文献   

18.
Oxidative stress and the role of antioxidants are currently one of the most important subjects in the field of life science. In the present study, we assessed the oxidation of plasma lipids induced by free radicals and its inhibition by antioxidants with a fluorescence probe BODIPY. Vitamin E and C-depleted plasma was used to evaluate the inherent action of several antioxidants. BODIPY reacted with free radicals in plasma to emit fluorescence (ex. 510 nm, em. 520 nm), which was suppressed by the antioxidants in a concentration-dependent manner. However, the suppression of fluorescence emission by antioxidants did not always correlate quantitatively with the suppression of lipid peroxidation. For example, alpha-tocopherol suppressed BODIPY fluorescence but enhanced the peroxidation of plasma lipids in the absence of ascorbic acid. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without a phytyl side chain, almost completely suppressed both fluorescence emission and lipid peroxidation in the plasma. These results show that BODIPY can be used as a convenient probe for radical scavenging, but that care should be taken for the evaluation of antioxidant capacity.  相似文献   

19.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 microM) and lazaroid (IC50 = 5.0 microM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 x 10(3) microM) and trolox (IC5 = 1.2 x 10(3) microM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2'-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2'azobis(2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

20.
Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2tāzo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-luminol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 μg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号