首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarized epithelial cells have a distinctive apical–basal axis of polarity for vectorial transport of ions and solutes across the epithelium. In contrast, migratory mesenchymal cells have a front–rear axis of polarity. During development, mesenchymal cells convert to epithelia by coalescing into aggregates that undergo epithelial differentiation. Signaling networks and protein complexes comprising Rho family GTPases, polarity complexes (Crumbs, PAR, and Scribble), and their downstream effectors, including the cytoskeleton and the endocytic and exocytic vesicle trafficking pathways, together regulate the distributions of plasma membrane and cytoskeletal proteins between front–rear and apical–basal polarity. The challenge is to understand how these regulators and effectors are adapted to regulate symmetry breaking processes that generate cell polarities that are specialized for different cellular activities and functions.  相似文献   

2.
A study was made of the morphogenesis of organotypic aggregates obtained by epithelial mesenchymal recombinations from the lungs of embryonic mice, intact and treated with urethane. Normal growth and differentiation of organotypic structures were observed in long-term cultures of aggregates obtained by recombinations of the lung epithelium (E) and mesenchyma (M) from intact (i) embryonic mice (EiMi). Hyperplasia and squamous-cell metaplasia (with or without keratinization) of the epithelium were found in aggregates obtained from E and M of the treated mouse embryos (EtMt) and in aggregates obtained by recombinations of lung E and M from intact and treated embryos (EtMi, EiMt). The data obtained suggest that the alterations in epithelial mesenchymal interactions are of great significance for transplacental lung blastomogenesis and that the mesenchymal lung cells play an important part in mediation of the transplacental carcinogenous effects on epithelial target cells via subsequent epithelial mesenchymal tissue interactions.  相似文献   

3.
4.
During kidney development and in response to inductive signals, the metanephric mesenchyme aggregates, becomes polarized, and generates much of the epithelia of the nephron. As such, the metanephric mesenchyme is a renal progenitor cell population that must be replenished as epithelial derivatives are continuously generated. The molecular mechanisms that maintain the undifferentiated state of the metanephric mesenchymal precursor cells have not yet been identified. In this paper, we report that functional inactivation of the homeobox gene Six2 results in premature and ectopic differentiation of mesenchymal cells into epithelia and depletion of the progenitor cell population within the metanephric mesenchyme. Failure to renew the mesenchymal cells results in severe renal hypoplasia. Gain of Six2 function in cortical metanephric mesenchymal cells was sufficient to prevent their epithelial differentiation in an organ culture assay. We propose that in the developing kidney, Six2 activity is required for maintaining the mesenchymal progenitor population in an undifferentiated state by opposing the inductive signals emanating from the ureteric bud.  相似文献   

5.
Members of the miR‐200 family are critical gatekeepers of the epithelial state, restraining expression of pro‐mesenchymal genes that drive epithelial–mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR‐200c and another epithelial‐enriched miRNA, miR‐375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA‐binding protein Quaking (QKI). During EMT, QKI‐5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI‐5 is both necessary and sufficient to direct EMT‐associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial‐derived cancer types. Importantly, several actin cytoskeleton‐associated genes are directly targeted by both QKI and miR‐200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT. These findings demonstrate the existence of a miR‐200/miR‐375/QKI axis that impacts cancer‐associated epithelial cell plasticity through widespread control of alternative splicing.  相似文献   

6.
Antidiuretic hormone (ADH) induces the fusion of long tubular organelles (aggrephores) with the luminal membrane of the receptor cell, and the delivery of particle aggregates to the membrane. Water flow is believed to take place through the particles. Nothing is known about the origin of the particle aggregates, their incorporation into the aggrephores, or the possible relationship of the aggrephores to the vesicular traffic that takes place in the epithelial cell. In the present studies of the ADH-sensitive epithelial cells of the toad urinary bladder, we have found that the spherical heads of the aggrephores appear to be clathrin-coated vesicles. We propose that vesicles originating from sites such as the Golgi or the luminal membrane may be engaged in aggrephore assembly, the resupply of particle aggregates to the aggrephores, and/or the removal of aggregates, and that the aggrephores may be central points in the pattern of vesicular traffic in the cell.  相似文献   

7.
A common feature of morphogenesis is the formation of three-dimensional structures from the folding of two-dimensional epithelial sheets, aided by cell shape changes at the cellular-level. Changes in cell shape must be studied in the context of cell-polarised biomechanical processes within the epithelial sheet. In epithelia with highly curved surfaces, finding single-cell alignment along a biological axis can be difficult to automate in silico. We present ‘Origami’, a MATLAB-based image analysis pipeline to compute direction-variant cell shape features along the epithelial apico-basal axis. Our automated method accurately computed direction vectors denoting the apico-basal axis in regions with opposing curvature in synthetic epithelia and fluorescence images of zebrafish embryos. As proof of concept, we identified different cell shape signatures in the developing zebrafish inner ear, where the epithelium deforms in opposite orientations to form different structures. Origami is designed to be user-friendly and is generally applicable to fluorescence images of curved epithelia.  相似文献   

8.
9.
It is demonstrated, using the Couette viscometer method, that talpid-3 mutant chick wing mesenchyme cells are more adhesive to one another than are normal cells. The relation of this to differences in the size and shape, and the internal architecture, of aggregates produced in rotation cultures of these cells was investigated. Sequences of sections through aggregates in all stages of formation, from 2-cell aggregates up to those with large cell numbers, were prepared. These confirm the theoretically predicted relationships among adhering cells which would produce the observed small, spherical talpid-3 aggregates and the larger, unevenly shaped normal aggregates. The cell contacts are further analysed with electron micrographs.  相似文献   

10.
Epithelial-mesenchymal interaction plays an important role in the differentiation of digestive tract. However, the factors of these mesenchymes involved in induction of the epithelial differentiation of each organs are still unknown. In the present study, we made reconstituted mesenchymal cell aggregates by mixing proventricular mesenchymal cells with other mesenchymal cells, recombined the reconstituted mesenchyme with gizzard epithelium, and observed the differentiation of the gizzard epithelium in the explants with special attention to the appearance of embryonic chicken pepsinogen, one of the molecular marker of the proventricular epithelial cells, in the gizzard epithelium. The results showed that the proventricular mesenchymal cells induce gland formation and pepsinogen in the gizzard epithelium and that the esophageal and gizzard mesenchymal cells have the inhibitory influence on the differentiation of epithelia toward proventricular epithelium. The cells from small-intestinal, lung and dorsal dermal mesenchyme have no such effect. Based on the results obtained so far, a hypothesis was presented to explain the mechanism regulating the differentiation of the epithelium in the digestive tract in the chicken embryo.  相似文献   

11.
The development of the nephron is piloted by interactions between epithelial and surrounding mesenchymal stem/progenitor cells. Data show that an astonishingly wide interstitial space separates both kinds of stem/progenitor cells. A simple contrasting procedure was applied to visualize features that keep renal epithelial and mesenchymal stem/progenitor cells in distance. The kidney of neonatal rabbits was fixed in solutions containing glutaraldehyde (GA) in combination with alcian blue, lanthanum, ruthenium red, or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the tissue was exactly orientated along the axis of collecting ducts. Fixation with GA or in combination with alcian blue or lanthanum revealed an inconspicuous interstitial space. In contrast, fixation with GA containing ruthenium red exhibits strands of extracellular matrix lining from epithelial stem/progenitor cells through the interstitium up to the surface of mesenchymal stem/progenitor cells. Fixation with GA containing tannic acid shows that the basal lamina of epithelial stem/progenitor cells, the adjacent interstitial space and also the surface of mesenchymal stem/progenitor cells are connected over a net of extracellular matrix. The applied technique appears to be a suitable method to illuminate the interstitium in stem/progenitor cell niches of specialized tissues, the microenvironment of tumors and extension of degeneration.  相似文献   

12.
13.
In a range of human cancers, tumorigenesis is promoted by activation of the endothelin A receptor (ET(A)R)/endothelin-1 (ET-1) axis. ET-1 and ET(A)R are overexpressed in primary and metastatic ovarian carcinomas, and high levels of ET-1 are detectable in patient ascites, suggesting that ET-1 may promote tumor dissemination. Moreover, in these tumors, engagement of ET(A) receptor by ET-1 triggers tumor growth, survival, angiogenesis, and invasiveness. Thus, ET-1 enhances the secretion of matrix metalloproteinases, disrupts intercellular communications, and stimulates cell migration and invasion. Therefore, we investigated the role of the ET-1/ET(A)R autocrine axis in promoting epithelial to mesenchymal transition (EMT) in ovarian tumor cells, a key event in cancer metastasis, in which epithelial cells depolarize, disassemble cell-cell contacts, and adopt an invasive phenotype. Here, we examine the potential role of ET-1 in regulating cell morphology and behavior and epithelial and mesenchymal proteins employing an in vitro 3-D culture system. We found that in 3-D serum-free collagen I gel cultures, HEY and OVCA 433 ovarian carcinoma cells undergo fibroblast-like morphologic changes between 3 and 5 days of ET-1 treatment. In these cells, ET-1 induces loss of adherens and tight-junction protein expression, E-cadherin, beta-catenin, and zonula occludens-1, and gain of N-cadherin and vimentin expression. These results confirm the ability of ET-1 to promote EMT, a metastable process involving sustained loss of epithelial markers and gain of mesenchymal markers. Collectively, these findings provide evidence of a critical role for the ET-1/ET(A)R axis during distinct steps of ovarian carcinoma progression, thus underlining this axis as a potential target in the treatment of ovarian cancer.  相似文献   

14.
Summary Diethylaminoethyl-derivatized dextran microspheres were used to cultivate Chinese hamster ovary, 293, Vero and swine testicular cells. Cells became attached to the microspheres but did not spread out. Instead, they grew in a more spherical shape and eventually formed multiple-cell-layer aggregates. Viability in these aggregates remained high after the cultures reached high cell concentrations. This cultivation method allows a high cell density to be achieved with a low microsphere concentration.Offprint requests to: W.-S. Hu  相似文献   

15.
16.
Establishment of an axis of cell polarity and differentiation of the cell poles are fundamental aspects of cellular development in many organisms. We compared the effects of two bacterial cytoskeletal-like systems, the MreB and MinCDE systems, on these processes in Escherichia coli. We report that the Min proteins are capable of establishing an axis of oscillation that is the initial step in establishment of polarity in spherical cells, in a process that is independent of the MreB cytoskeleton. In contrast, the MreB system is required for establishment of the rod shape of the cell and for polar targeting of other polar constituents, such as the Shigella virulence factor IcsA and the aspartate chemoreceptor Tar, in a process that is independent of the Min system. Thus, the two bacterial cytoskeletal-like systems act independently on different aspects of cell polarization.  相似文献   

17.
Vasculogenesis in embryonic hearts proceeds by formation of aggregates consisting of erythroblasts and endothelial cells. These aggregates are called blood-islands or blood-island-like structures. We aimed to characterize blood islands in mouse embryonic hearts at stages spanning from 11 dpc through 13 dpc, i.e. prior to the establishment of the coronary circulation. Our observations suggested that there are two types of blood islands. One formed by migrating nucleated erythroblasts, which associated with migrating endothelial cell and the second by in situ emergence of two kinds of cells belonging to separate populations: one resembling an erythroblast progenitor and the second resembling an endothelial-cell progenitor. The subepicardial blood islands contain nucleated erythroblasts, undifferentiated mesenchymal cells, platelets, and early lymphocytes. The subepicardial blood islands resemble vesicles with protruding prongs directed toward the myocardium. Ahead of the prongs, angiogenic sprouting and degradation of fibronectin is observed. Vesicles gradually change their shape from spherical to tubular at 13 dpc and grow and extend along the interventricular sulcuses forming vascular tubes. We presume that the vascular tubes located within the interventricular sulcuses are precursors of coronary veins. Our data seems to indicate that embryonic heart vasculogenesis is accompanied by hematopoiesis  相似文献   

18.
Physiologically, cells experience and respond to a variety of mechanical stimuli such as rigidity and topography of the extracellular matrix. However, little is known about the effects of substrate curvature on cell behavior. We developed a novel, to our knowledge, method to fabricate cell culture substrates with semicylindrical grooves of negative curvatures (radius of curvature, Rc = 20–100 μm). We found that negative substrate curvatures induced elongation of mesenchymal and epithelial cells along the cylinder axis. As Rc decreases, mesenchymal National Institutes of Health 3T3 fibroblasts increasingly elongate along the long axis of the grooves, whereas elongation of epithelial Madin-Darby Canine Kidney (MDCK) cells is biphasic with maximal cell elongation when Rc = 40 μm. Addition of blebbistatin to MDCK cells to reduce cortical actin rigidity resulted in a decrease in cell elongation across all curvatures while preserving the biphasic trend. However, addition of calyculin A or ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, to increase cortical rigidity or reduce intercellular adhesion, respectively, resulted in a monotonic increase in MDCK cell elongation with decreasing Rc. Using an energy minimization model, we showed that cell elongation in epithelial cell sheet is governed by the competition between two energies as Rc decreases: curvature-dependent intercellular adhesion that prevents elongation; and intracellular cortical actin bending that enhances elongation. Therefore, our results of cellular elongation induced by negatively curved substrates offer insights into how tubule elongation or growth of tubular structures such as kidney tubules can be controlled by the substrate curvature in vivo.  相似文献   

19.
20.
During vertebrate limb development, the limb bud grows along the proximo-distal (P-D) direction, with the cells changing their adhesiveness. To know whether the position-related differences in cell adhesiveness are actually utilized by morphogenesis to constitute limb structures, we grafted cell aggregates made of dissociated cells derived from different positions and stages of developing hind limb buds into developing hind limb buds and observed the behavior of the cells. Cell aggregates made of dissociated mesenchymal cells from two different origins were implanted in different positions and stages of limb buds or grafted on limb stumps made by cutting. The two grafted cell populations in the aggregate always sorted out from each other, but their patterning of sorting-out was quite different according to the transplanted regions. In summary, cells in the aggregate that have closer positional identity to the transplanted site were always situated at the boundary between host and donor cells. The pattern of sorting-out seemed to be determined by the relative adhesiveness of surrounding cells to the constituent cells of the aggregates. We also transplanted fragments dissected out from different regions along the P-D axis into st. 50 limb buds. The descendants of grafted cells moved distally to the region corresponding to their positional identity and participated in the formation of more distal structures from that point. These results suggest that the difference in cell adhesiveness may probably play a role in arranging cells along the P-D axis of a developing limb bud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号