首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Takabe  S Asami  T Akazawa 《Biochemistry》1980,19(17):3985-3989
A homogeneous preparation of transketolase was obtained from spinach leaf; the specific enzyme activity was 9.5 mumolo of glyceraldehyde-3-P formed (mg of protein)-1 min-1, when xylulose-5-P and ribose-5-P were used as the donor and acceptor, respectively, of the ketol residue. Transketolase catalyzed the formation of glycolate from fructose-6-P coupled with the O2- -generating system of xanthine-xanthine oxidase. The addition of superoxide dismutase (145 units) or 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) (5 mM), both O2- scavengers, to the reaction system inhibited glycolate formation 72 and 58%, respectively. The reacton was not inhibited by catalase. Mannitol, an .OH scavenger, and beta-carotene and 1,4-diazobicyclo[2.2.2]octane, 1O2 scavengers, showed little or no inhibitory effects. The rate of glycolate formation catalyzed by the transketolase system was measured in a coupled reaction with a continuous supply of KO2 dissolved in dimethyl sulfoxide, used as an O2- -generating system. The optimum pH of the reaction was above pH 8.5. The second-order rate constant for the reaction between transketolase and O2-, determined by the competition for O2- between nitroblue tetrazolium (NBT) and transketolase, was 1.0 X 10(6) M-1 s-1. Transketolase showed an inhibitory effect on the O2- -dependent reduction of NBT only if the reaction mixture was previously incubated with ketol donors such as fructose-6-P, xylulose-5-P, or glycolaldehyde. The results suggest the possibility that transketolase catalyzes O2- -dependent glycolate formation under increased steady-state levels of O2- in the chloroplast stroma.  相似文献   

2.
Tumor cells extensively utilize the pentose phosphate pathway for the synthesis of ribose. Transketolase is a key enzyme in this pathway and has been suggested as a target for inhibition in the treatment of cancer. In a pharmacodynamic study, nude mice with xenografted HCT-116 tumors were dosed with 1 ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of thiamine, the co-factor of transketolase. Transketolase activity was almost completely suppressed in blood, spleen, and tumor cells, but there was little effect on the activity of the other thiamine-utilizing enzymes alpha-ketoglutarate dehydrogenase or glucose-6-phosphate dehydrogenase. Synthesis and SAR of transketolase inhibitors is described.  相似文献   

3.
3'-Azido-2',3'-dideoxyuridine (AZDU) is a nucleoside analog structurally similar to zidovudine (AZT) with proven activity against human immunodeficiency virus (HIV). The purpose of this study was to develop and validate a high-performance liquid chromatographic (HPLC) method to quantitatively determine AZDU and its novel prodrugs in rat plasma simultaneously. A reversed-phase gradient elution HPLC method was developed to quantitate AZDU and its prodrugs, N3-pivaloyloxymethyl-3'-azido-2',3'-dideoxyuridine (I), 5'-pivaloyloxymethyl-3'-azido-2',3'-dideoxyuridine (II), 5'-O-valinyl-3'-azido-2',3'-dideoxyuridine hydrochloride (III) and 5'-O-phenylalanyl-3'-azido-2',3'-dideoxyuridine hydrochloride (IV), in rat plasma. AZDU and its prodrugs were analyzed using an octadecyl silane column with a mobile phase consisting of 0.04 microM sodium acetate buffer, pH 5.0, and acetonitrile, running in a segmented gradient manner at a flow rate of 2 ml/min. Acetonitrile was increased from 10 to 50% during the first 8 min by 5% per min, followed by 10% per min until it reached 90% acetonitrile. 3'-Azido-2',3'-dideoxy-5-ethyluridine (CS-85) was used as an internal standard (25 microg/ml). Compounds were detected by UV absorption at 261 nm. Extraction recoveries for all compounds were greater than 80%. Retention times of AZDU, CS-85, prodrugs I, II, III and IV were 3.3, 5.2, 9.1, 8.8, 6.3 and 7.3 min, respectively. Calibration plots were linear over the range of 0.25-100 microg/ml for AZDU and prodrugs II, III, and IV and 0.5-100 microg/ml for prodrug I. The limit of quantitation was 0.25 microg/ml for prodrugs II, III and IV and 0.5 microg/ml for prodrug I. The intra- and inter-day variations were less than 10% and accuracies were greater than 90%. This method is rapid, sensitive and reproducible for the determination of AZDU and prodrugs in rat plasma.  相似文献   

4.
We have designed and synthesized the acetal derivatives of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, 1), the 2',3'-O-nitrobenzylidene derivatives 2 and 3 and the 5'-O-(alkoxy)(nitrophenyl)methyl derivatives 6-10 as potential prodrugs of ECyd. These prodrugs can be selectively activated in tumor tissues via a bio-reduction-hydrolysis mechanism owing to the characteristic properties of tumor tissues, such as hypoxia and lower pH. Although the 2',3'-O-(4-nitrobenzylidene) derivatives 2 and 3 were converted bio-reductively into the corresponding 4-aminobenzylidene derivatives by rat S-9 mix, the reduction products, that is, the corresponding amino congeners 4 and 5, proved to be rather stable in an aqueous solution at pH 6.5 used as a pH model for acidic tumor tissues. In contrast, the 5'-O-(alkoxy)(4-nitropheny)methyl derivatives 6-8 were also reduced by rat S-9 mix to the corresponding amino congeners 11-13, which were hydrolyzed to release ECyd more effectively at pH 6.5 than at pH 7.4. Accordingly, the acyclic acetals 6-8 may be efficient prodrugs of ECyd, that are effectively reduced under physiological conditions releasing ECyd in acidic tumor tissues.  相似文献   

5.
A number of enediyne prodrugs 1-5 possessing an (E)-3-hydroxy-4-(2'-hydroxy-1'-phenylethylidene)cyclodeca-1,5-diyne scaffold have been synthesized via the Sonogashira coupling and an intramolecular Nozaki-Hiyama-Kishi reaction as the key steps. Upon incubation with enediyne prodrugs 4 and 5 possessing a free hydroxymethyl group on the exocyclic double bond, circular supercoiled DNA (Form I) underwent single strand cleavage into circular relaxed DNA (Form II) in buffer solution at pH 8.5, while the silylated analogs 1-3 showed very weak DNA cleavage activity. Alternatively, the silylated analogs 1-3 could be activated by UV irradiation via a photochemical alkene isomerization followed by an allylic rearrangement to form the putative epoxy enediyne, resulting in efficient DNA cleavage similar to the level observed with the prodrugs 4 and 5.  相似文献   

6.
The device of new hepatotrophic prodrugs of the antiviral nucleoside 9-(2-phosphonylmethoxyethyl)adenine (PMEA) with specificity for the asialoglycoprotein receptor on parenchymal liver cells is described. PMEA was conjugated to bi- and trivalent cluster glycosides (K(GN)(2) and K(2)(GN)(3), respectively) with nanomolar affinity for the asialoglycoprotein receptor. The liver uptake of the PMEA prodrugs was more than 10-fold higher than that of the parent drug (52+/-6% and 62+/-3% vs. 4.8+/-0.7% of the injected dose for PMEA) and could be attributed for 90% to parenchymal cells. Accumulation of the PMEA prodrugs in extrahepatic tissue (e.g., kidney, skin) was substantially reduced. The ratio of parenchymal liver cell-to-kidney uptake-a measure of the prodrugs therapeutic window-was increased from 0.058 +/- 0.01 for PMEA to 1.86 +/- 0.57 for K(GN)(2)-PMEA and even 2.69 +/- 0.24 for K(2)(GN)(3)-PMEA. Apparently both glycosides have a similar capacity to redirect (antiviral) drugs to the liver. After cellular uptake, both PMEA prodrugs were converted into the parent drug, PMEA, during acidification of the lysosomal milieu (t(1/2) approximately 100 min), and the released PMEA was rapidly translocated into the cytosol. The antiviral activity of the prodrugs in vitro was dramatically enhanced as compared to the parent drug (5- and 52-fold for K(GN)(2)-PMEA and K(2)(GN)(3)-PMEA, respectively). Given the 15-fold enhanced liver uptake of the prodrugs, we anticipate that the potency in vivo will be similarly increased. We conclude that PMEA prodrugs have been developed with greatly improved pharmacokinetics and therapeutic activity against viral infections that implicate the liver parenchyma (e.g., HBV). In addition, the significance of the above prodrug concept also extends to drugs that intervene in other liver disorders such as cholestasis and dyslipidemia.  相似文献   

7.
A series of nitrobenzyl- and nitroimidazolylmethyl carbamate prodrugs of doxorubicin were prepared and evaluated for their potential use in nitroreductase (NTR) mediated gene-directed enzyme prodrug therapy (GDEPT). The carbamate prodrugs and doxorubicin were tested in a cell line panel comprising parental and NTR transfected human (SKOV3/SKOV3-NTR(neo), WiDr/WiDr-NTR(neo)), Chinese hamster (V79/V79-NTR(puro)) and murine (EMT6/EMT6-NTR(puro)) cell line pairs, and were compared with the established NTR substrates CB 1954 (an aziridinyl dinitrobenzamide) and the analogous dibromomustard SN 29427. The low solubility of the prodrugs (from 3 to 39 microM) precluded the determination of IC(50) values against the parent cell lines in some instances. All of the prodrugs were unstable in culture medium with 5% added fetal calf serum over a 24h period, although release of doxorubicin was not observed. The prodrugs were 20- to >336-fold less toxic than doxorubicin in the human cells lines SKOV3 and WiDr, with overall less deactivation seen in the V79 cell line (11- to >286-fold) and EMT6 cell line (1.8- to >178-fold). Prodrugs with the nitrobenzyl unit directly conjugated to doxorubicin showed modest selectivity for NTR across the cell line panel (1- to 5.9-fold) but this was increased to between >10- and >370-fold with the interpolation of an 4-aminobenzyl spacer unit between the bioreductive unit and doxorubicin. A 2-nitroimidazolylmethyl carbamate provided deactivation of doxorubicin (8- to 124-fold) but showed only modest selectivity for NTR (2- to 14-fold) across the panel. The interpolation of a 4-aminobenzyl spacer gave slightly lower deactivation (3- to 64-fold) and similar selectivity for NTR (>1.2- to >12-fold) for 2- and 5-nitroimidazolylmethyl prodrugs. The activity of two nitrobenzyl prodrugs containing an aminobenzyl spacer, providing excellent selectivity for NTR+ve cells in culture, was evaluated against EMT6 tumours comprising ca. 10% NTR+ve cells, but neither showed statistically significant levels of killing even of NTR+ve cells. This lack of activity in tumours, despite potent and selective activity in culture, indicates that pharmacokinetic optimization is needed to achieve in vivo efficacy against solid tumours with this new class of NTR prodrugs.  相似文献   

8.
In an earlier study using Caco-2 cells, an in vitro cell culture model of the intestinal mucosa, we have shown that the coumarinic-based (3 and 4) and the phenylpropionic acid-based (5 and 6) cyclic prodrugs were more able to permeate the cell monolayers than were the corresponding opioid peptides, [Leu5]-enkephalin (1, H-Tyr-Gly-Gly-Phe-Leu-OH) and DADLE (2, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH). In an attempt to explain the increased permeation of the cyclic prodrugs, we have determined the possible conformations of these cyclic prodrugs in solution, using spectroscopic techniques (2D-NMR, CD) and molecular dynamics simulations. Spectroscopic as well as molecular dynamic studies indicate that cyclic prodrug 4 exhibits two major conformers (A and B) in solution. Conformer A exhibited a type I beta-turn at Tyr1-D-Ala2-Gly3-Phe4. The presence of a turn was supported by ROE cross-peaks between the NH of D-Ala2 and the NH of Gly3 and between the NH of Gly3 and the NH of Phe4. Conformer B of cyclic prodrug 4 consisted of type II beta-turns at the same positions. The type II turn was stabilized by hydrogen bonding, thus forming a more compact structure, whereas the type I turn did not exhibit similar intramolecular hydrogen bonding. Spectroscopic data for compounds 3, 5 and 6 are consistent with the conclusion that these cyclic prodrugs have solution structures similar to those observed with cyclic prodrug 4. The increased lipophilicity and well-defined secondary structures in cyclic prodrugs 3-6, but not in the linear peptides 1 and 2, could both contribute to the enhanced ability of these prodrugs to permeate membranes.  相似文献   

9.
The objective of this work was to synthesize cyclic prodrugs 1a-d of RGD peptidomimetics 2a-d with various ring sizes (n[CH2] = 1, 3, 5 and 7) and to evaluate the effect of ring size on their transport, physicochemical, enzymatic stability, and antithrombic properties. The syntheses of cyclic prodrugs 1a-d were achieved by converging two key intermediates, Boc-Phe-O-CH2-OCO-OpNP (5) and H2N-(CH2)n-CO-Asp(OBzl)-OTce (8a-d), to give linear precursors Boc-Phe-O-CH2-OCO-HN-(CH2)n-CO-Asp(OBzl)-OTce (9a-d). The N- and C-terminus protecting groups were removed from 9a-d to give 10a-d. Linear precursors 10a-d were cyclized, and the remaining Bzl-protecting group was removed to produce cyclic prodrugs 1a-d in around 20% overall yield. The linear RGD peptidomimetics (2a-d) were synthesized using standard Boc-amino acid chemistry by solution-phase method. Increasing the ring size by adding methylene groups also increases the hydrophobicity of the cyclic prodrugs and parent RGD peptidomimetics. The transport properties of cyclic prodrugs 1c and 1d were 2.6- and 4.4-fold better than those of parent compounds 2c and 2d, respectively. These results suggest that increasing the hydrophobicity of the cyclic prodrugs and parent RGD peptidomimetics enhanced their transport properties. The hydrodynamic radii of the cyclic prodrugs were also smaller than those of their respective parent compounds, suggesting that the change in size may contribute to their transport properties. The chemical stability of the cyclic prodrugs was affected by the ring size, and the cyclic prodrug with the larger ring size (i.e. 1d) was more stable than the smaller one (i.e. 1a). All the cyclic prodrugs were more stable at pH 4 than at pH 7 and 10. Prodrug-to-drug conversion could be induced by isolated esterase as well as esterase found in human plasma. An increase in the length of methylene group (n[CH2] = 1, 3, 5, 7) enhanced the antithrombic activity of the prodrugs and the parent compounds. In summary, the ring size of cyclic prodrugs affected their transport, physicochemical, and antithrombic properties.  相似文献   

10.
Four novel water-soluble peptide-paclitaxel conjugates were designed and synthesized as prostate-specific antigen (PSA)-activated prodrugs for prostate cancer therapy. These prodrugs were composed of a peptide, HSSKLQ or SSKYQ, each of which is selectively cleavable by PSA; a self-immolative linker, either para-aminobenzyl alcohol (PABS) or ethylene diamine (EDA); and the parent drug, paclitaxel. Introduction of a PABA or EDA linker between the peptide and paclitaxel in prodrugs 2-5 resulted in products with an increased rate of hydrolysis by PSA. The stability of prodrugs 2 and 3, with the PABA linker, was poor in the serum-containing medium because of the weak carbonate bond between the PABA and paclitaxel; however, this disadvantage was overcome by introducing a carbamate bond using an EDA linker in prodrugs 4 and 5. Thus, the incorporation of an EDA linker increased both the stability and PSA-mediated activation of these prodrugs. The cytotoxicity of each prodrug, as compared to paclitaxel, was determined against a variety of cell lines, including the PSA-secreting CWR22Rv1 prostate cancer cell line. The EDA-derived prodrug of paclitaxel 5 was stable and capable of being efficiently converted to an active drug that killed cells specifically in the presence of PSA, suggesting that this prodrug and similarly designed PSA-cleavable prodrugs may have potential as prostate cancer-specific therapeutic agents.  相似文献   

11.
1. Measurements were made of the activities of the enzymes of the pentose phosphate pathway concerned in both the oxidative (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and the non-oxidative (ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) reactions of this pathway, together with hexokinase and phosphoglucose isomerase, in adipose tissue in a variety of nutritional and hormonal conditions. 2. Starvation for 2 days caused a significant decrease in the activities of all the enzymes of the pentose phosphate pathway, with the exception of glucose 6-phosphate dehydrogenase, when expressed as activity/2 fat-pads; only the activities of ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase were significantly decreased on the basis of activity/mg. of protein. Re-feeding with a high-carbohydrate or high-fat diet for 3 days restored the activity of all the enzymes of the pentose phosphate pathway to the range of the control values, with the exception of transketolase, which showed a marked ;overshoot' in rats re-fed with carbohydrate. Starvation for 3 days caused a marked decrease in the activities of glucose 6-phosphate dehydrogenase and transketolase. 3. On the basis of activity/two fat-pads, alloxan-diabetes caused a marked decrease, to about half the control value, in the activities of all the enzymes concerned in the pentose phosphate pathway, transketolase showing the smallest decrease; hexokinase and phosphoglucose isomerase activities were also decreased. Treatment with insulin for 3 and 7 days raised the activities to normal or supranormal values, transketolase showing the most marked ;overshoot' effect. On the basis of activity/mg. of protein the activity of none of the enzymes was significantly decreased in alloxan-diabetes; transketolase and transaldolase activities were raised above the control values. With insulin treatment for 3 or 7 days the activities of all the enzymes were significantly increased, except that of ribulose 5-phosphate epimerase at the shorter time-interval. Glucagon treatment did not alter any of the enzyme activities expressed on either basis. 4. Thyroidectomy caused a decrease of 30-40% in the activities of enzymes of the pentose phosphate pathway, except for transketolase activity, which fell to 50% of the control value. Little change occurred in adipose-tissue weight or protein content. 5. Adrenalectomy caused a decrease of 40% in the activity of glucose 6-phosphate dehydrogenase and of 20-30% in the activities of the remaining enzymes of the pentose phosphate pathway; hexokinase activity was also decreased. Treatment with cortisone for 3 days did not significantly raise the activity from that found in adrenalectomized rats. Treatment of normal rats with high doses of cortisone had no significant effect on the activities of the enzymes of the pentose phosphate pathway in adipose tissue. 6. The changes in enzyme activities are discussed in relation to: (a) the concept of constant-proportion groups of enzymes; (b) the known changes in the flux of glucose through alternative metabolic pathways; (c) the pattern of change found in liver with similar hormonal and dietary conditions.  相似文献   

12.
The 3',5'-cyclic phosphate prodrug 9-[β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl]-2-amino-6-ethoxypurine, PSI-352938 1, has demonstrated promising anti-HCV efficacy in vitro and in human clinical trials. A structure-activity relationship study of the nucleoside 3',5'-cyclic phosphate series of β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl nucleoside prodrugs was undertaken and the anti-HCV activity and in vitro safety profile were assessed. Cycloalkyl 3',5'-cyclic phosphate prodrugs were shown to be significantly more potent as inhibitors of HCV replication than branched and straight chain alkyl 3',5'-cyclic phosphate prodrugs. No cytotoxicity and mitochondrial toxicity for prodrugs 12, 13 and 19 were observed at concentrations up to 100μm in vitro. Cycloalkyl esters of 3',5'-cyclic phosphate nucleotide prodrugs demonstrated the ability to produce high levels of active triphosphate in clone-A cells and primary human hepatocytes. Compounds 12, 13 and 19 also demonstrated the ability to effectively deliver in vivo high levels of active nucleoside phosphates to rat liver.  相似文献   

13.
1. The binding kinetics for [35S]thiamine pyrophosphate to transketolase and the dependency of transketolase on divalent cations for activity were investigated. 2. With Scatchard analysis, dissociation constant (Kd) and n value were calculated to be 0.2 x 10(-6) M and 0.66 respectively. 3. The activity of the reconstituted enzyme increased in the order of Co2+ less than Mn2+ less than Ca2+ less than Mg2+. The native transketolase contained Mg2+ in its molecular structure.  相似文献   

14.
We describe herein the synthesis, bioconversion, antifungal activity, and preliminary toxicology evaluation of a series of N-acyloxymethyl carbamate linked triprodrugs of pseudomycins. The syntheses of these prodrugs (3-6) were achieved via simple N-acylation of PSB (1) or PSC' (2) with various prodrug linkers (7-9). As expected, upon incubation with mouse and/or human plasma, many of these prodrugs (3, 5, and 6) were converted to the parent compound within a few hours. Of particular significance, two pseudomycin triprodrugs (5 and 6) showed excellent in vivo efficacy against systemic Candidiasis without tail vein irritation being observed.  相似文献   

15.
5'-O-palmitoyl- and 3',5'-O-dipalmitoyl-5-fluoro-2'-deoxyuridine were prepared by the reaction of 5-fluoro-2'-deoxyuridine in dimethylacetamide with palmitic acid chloride. The incorporation of the synthesized prodrugs into liposomes composed of egg phosphatidylcholine/stearylamine/cholesterol/alpha-tocopherol at a molar ratio of 10:1:2:0.05 was nearly quantitative; homogeneous bilayer vesicles (75 nm diameter) were obtained. Preliminary tolerance studies revealed that the prodrug-liposome preparations are about 20-60 times more toxic than the parent drug. The prodrugs incorporated into liposomes were 10 to 30 times more active against murine colon 38 carcinoma compared to the free drug. In comparison to the administration of the prodrugs in peanut oil the liposomal preparations seem to exert improved effects and represent a valuable drug delivery system for parenteral applications.  相似文献   

16.
Piperazinylalkyl ester prodrugs (4a–5d) of 6-methoxy-2-naphthylacetic acid (6-MNA) (1) were synthesized and evaluated in vitro for the purpose of percutaneous drug delivery. These ionizable prodrugs exhibited varying aqueous solubilities and lipophilicities depending on the pH of the medium. The prodrugs (4a–5c) showed higher aqueous solubility and similar lipophilicity at pH 5.0 and lower aqueous solubility and higher lipophilicity at pH 7.4 in comparison to 6-MNA. The chemical and enzymatic hydrolyses of the prodrugs was investigated in aqueous buffer solutions (pH 5.0 and 7.4) and in 80% human serum (pH 7.4) at 37°C. The prodrugs showed moderate chemical stability (t1/2 = 6–60 h) but got readily hydrolyzed enzymatically to 6-MNA with half-life ranging from 10–60 min. In the in vitro permeation study using rat skin, the flux of 6-MNA and the prodrugs was determined in aqueous buffers of pH 5.0 and 7.4. The prodrug (5b) showed 7.9- and 11.2-fold enhancement in skin permeation compared to 6-MNA (1) at pH 5.0 and 7.4, respectively. It was concluded that the parent NSAIDs having favorable pharmacokinetic and pharmacodynamic properties coupled with increased skin permeability of their prodrugs could give better options for the treatment of rheumatic diseases.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0240-6) contains supplementary material, which is available to authorized users.KEY WORDS: 6-MNA, NSAID, piperazinylalkylester, prodrug, skin permeation  相似文献   

17.
We report on a target-based approach to identify possible Mycobacterium tuberculosis DXS inhibitors from the structure of a known transketolase inhibitor. A small focused library of analogs was assembled in order to begin elucidating some meaningful structure-activity relationships of 3-(4-chloro-phenyl)-5-benzyl-4H-pyrazolo[1,5-a]pyrimidin-7-one. Ultimately we found that 2-methyl-3-(4-fluorophenyl)-5-(4-methoxy-phenyl)-4H-pyrazolo[1,5-a]pyrimidin-7-one, although still weak, was able to inhibit M. tuberculosis DXS with an IC(50) of 10.6 microM.  相似文献   

18.
Apart from catalyzing the common two-substrate reaction with ketose as donor substrate and aldose as acceptor substrate, transketolase is also able to catalyze a one-substrate reaction utilizing only ketose (xylulose 5-phosphate) as substrate. The products of this one-substrate reaction were glyceraldehyde 3-phosphate and erythrulose. No free glycolaldehyde (a product of xylulose 5-phosphate splitting in the transketolase reaction) was revealed.  相似文献   

19.
The standard assay for transketolase (E.C 2.2.1.1) has depended upon the use of d-xylulose 5-phosphate as the ketose donor substrate since the production of d-glyceraldehyde 3-phosphate can be readily coupled to a reaction that consumes NADH allowing the reaction to be followed spectrophotometrically. Unfortunately, commercial supplies of d-xylulose 5-phosphate recently became unavailable. In this article we describe the coupling of a transketolase reaction (using Leishmania mexicana transketolase) that converts d-fructose 6-phosphate to d-erythrose 4-phosphate. d-Erythrose 4-phosphate can then be converted to 4-phosphate d-erythronate using erythrose-4-phosphate dehydrogenase (E.C 1.2.1.72), a reaction that reduces NAD+ to NADH and can be easily followed spectrophotometrically. d-Ribose 5-phosphate and d-glyceraldehyde 3-phosphate can both be used as ketol acceptor substrates in the reaction although d-ribose 5-phosphate is also a substrate for the coupling enzyme.  相似文献   

20.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号