首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to air pollution [particulate matter, particles <10 microm (PM(10))] causes a systemic inflammatory response that includes stimulation of the bone marrow (BM) and progression of atherosclerosis. Monocytes are known to play a key role in atherogenesis by migration into subendothelial lesions where they appear as foam cells. The present study was designed to quantify the BM monocyte response in Watanabe heritable hyperlipidemic (WHHL) rabbits after PM(10) exposure. WHHL rabbits were given twice weekly intrapharyngeal instillations of 5 mg of PM(10) for 4 wk to a total of 40 mg and compared with control WHHL or New Zealand White (NZW) rabbits. The thymidine analog 5'-bromo-2'-deoxyuridine was used to label dividing cells in the BM and a monoclonal antibody to identify monocytes in peripheral blood. The transit time of monocytes through the BM was faster in WHHL than in NZW rabbits (30.4 +/- 1.9 h vs. 35.2 +/- 0.9 h, WHHL vs. NZW; P < 0.05). PM(10) instillation exposure increased circulating band cell counts, caused rapid release of monocytes from the BM, and further shortened their transit time through the BM to 23.2 +/- 1.6 h (P < 0.05). The percentage of alveolar macrophages containing particles in the lung correlated with the BM transit time of monocytes (r(2) = 0.45, P <0.05). We conclude that atherosclerosis increases the release of monocytes from the BM, and PM(10) exposure accelerates this process in relation to the amount of particles phagocytosed by alveolar macrophages.  相似文献   

2.
Quest for novel cardiovascular biomarkers by proteomic analysis   总被引:2,自引:0,他引:2  
Atherosclerosis, and the resulting coronary heart disease and stroke, is the most common cause of death in developed countries. Atherosclerosis is an inflammatory process that results in the development of complex lesions or plaques that protrude into the arterial lumen. Plaque rupture and thrombosis result in the acute clinical complications of myocardial infarction (MI) and stroke. Although certain risk factors (dyslipidemias, diabetes, hypertension) and humoral markers of plaque vulnerability (C-reactive protein, interleukin-6, 10 and 18, CD40L) have been identified, a highly sensitive and specific biomarker or protein profile, which could provide information on the stability/vulnerability of atherosclerotic lesions, remains to be identified. In this review, we report several proteomic approaches which have been applied to circulating or resident cells, atherosclerotic plaques or plasma, in the search for new proteins that could be used as cardiovascular biomarkers. First, an example using a differential proteomic approach (2-DE and MS) comparing the secretome from control mammary arteries and atherosclerotic plaques is displayed. Among the different proteins identified, we showed that low levels of HSP-27 could be a potential marker of atherosclerosis. Second, we have revised several studies performed in cells involved in the pathogenesis of atherosclerosis (foam cells and smooth muscle cells). Another approach consists of performing proteomic analysis on circulating cells or plasma, which will provide a global view of the whole body response to atherosclerotic aggression. Circulating cells can bear information reflecting directly an inflammatory or pro-coagulant state related to the pathology. As an illustration, we report that circulating monocytes and plasma in patients with acute coronary syndromes has disclosed that mature Cathepsin D is increased both in the plasma and monocytes of these patients. Finally, the problems of applying proteomic approach directly to plasma will be discussed. The purpose of this review is to provide the reader with an overview of different proteomic approaches that can be used to identify new biomarkers in vascular diseases.  相似文献   

3.
The progressive accumulation of monocyte-derived cells in the atherosclerotic plaque is a hallmark of atherosclerosis. However, it is now appreciated that monocytes represent a heterogeneous circulating population of cells that differ in functionality. New approaches are needed to investigate the role of monocyte subpopulations in atherosclerosis since a detailed understanding of their differential mobilization, recruitment, survival and emigration during atherogenesis is of particular importance for development of successful therapeutic strategies. We present a novel methodology for the in vivo examination of monocyte subpopulations in mouse models of atherosclerosis. This approach combines cellular labeling by fluorescent beads with multiphoton microscopy to visualize and monitor monocyte subpopulations in living animals. First, we show that multiphoton microscopy is an accurate and timesaving technique to analyze monocyte subpopulation trafficking and localization in plaques in excised tissues. Next, we demonstrate that multiphoton microscopy can be used to monitor monocyte subpopulation trafficking in atherosclerotic plaques in living animals. This novel methodology should have broad applications and facilitate new insights into the pathogenesis of atherosclerosis and other inflammatory diseases.  相似文献   

4.
5.
6.
Background aims. After a myocardial infarction (MI) atherosclerosis is accelerated leading to destabilization of the atherosclerotic plaque. mesenchymal stromal cells are a promising therapeutic option for atherosclerosis. Previously, we demonstrated a novel stem cell delivery technique, with adipose stem cells coupled to microbubbles (i.e., StemBells) as therapy after MI. In this study, we aim to investigate the effect of StemBell therapy on atherosclerotic plaques in an atherosclerotic mouse model after MI. Methods. MI was induced in atherosclerotic Apolipoprotein E–deficient mice that were fed a high-fat Western diet. Six days post-MI, the mice received either 5?×?105/100 µL StemBells or vehicle intravenously. The effects of StemBell treatment on the size and stability of aortic root atherosclerotic plaques and the infarcted heart were determined 28 days post-MI via (immuno)histological analyses. Moreover, monocyte subtypes and lipids in the blood were studied. Results. StemBell treatment resulted in significantly increased cap thickness, decreased intra-plaque macrophage density and increased percentage of intra-plaque anti-inflammatory macrophages and chemokines, without affecting plaque size and serum cholesterol/triglycerides. Furthermore, StemBell treatment significantly increased the percentage of anti-inflammatory macrophages within the infarcted myocardium but did not affect cardiac function nor infarct size. Finally, also the average percentage of anti-inflammatory monocytes in the circulation was increased after StemBell therapy. Discussion. StemBell therapy increased cap thickness and decreased intra-plaque inflammation after MI, indicative of stabilized atherosclerotic plaque. It also induced a shift of circulating monocytes and intra-plaque and intra-cardiac macrophages towards anti-inflammatory phenotypes. Hence, StemBell therapy may be a therapeutic option to prevent atherosclerosis acceleration after MI.  相似文献   

7.
Increased monocyte recruitment into subendothelial space in atherosclerotic lesions is one of the hallmarks of diabetic angiopathy. The aim of this study was to determine the state of peripheral blood monocytes in diabetes associated with atherosclerosis. Diabetic patients treated with/without an oral hypoglycemic agent and/or insulin for at least 1 year were recruited (n=106). We also included 24 non-diabetic control subjects. We measured serum levels of monocyte chemoattractant protein (MCP)-1, fasting plasma glucose (FPG), HbA1c, total cholesterol, triglyceride, body mass index (BMI), high sensitivity CRP (hs-CRP) and evaluated CCR2, CD36, CD68 expression on the surface of monocytes. Serum MCP-1 levels were significantly (p<0.05) higher in diabetic patients than in normal subjects. In diabetic patients, serum MCP-1 levels correlated significantly with FPG, HbA1c, triglyceride, BMI, and hs-CRP. The expression levels of CCR2, CD36, and CD68 on monocytes were significantly increased in diabetic patients and were more upregulated by MCP-1 stimulation. Our data suggest that elevated serum MCP-1 levels and increased monocyte CCR2, CD36, CD68 expression correlate with poor blood glucose control and potentially contribute to increased recruitment of monocytes to the vessel wall in diabetes mellitus.  相似文献   

8.
Epidemiologic and animal studies have shown that exposure to particulate matter air pollution (PM) is a risk factor for the development of atherosclerosis. Whether PM-induced lung and systemic inflammation is involved in this process is not clear. We hypothesized that PM exposure causes lung and systemic inflammation, which in turn leads to vascular endothelial dysfunction, a key step in the initiation and progression of atherosclerosis. New Zealand White rabbits were exposed for 5 days (acute, total dose 8 mg) and 4 wk (chronic, total dose 16 mg) to either PM smaller than 10 mum (PM(10)) or saline intratracheally. Lung inflammation was quantified by morphometry; systemic inflammation was assessed by white blood cell and platelet counts and serum interleukin (IL)-6, nitric oxide, and endothelin levels. Endothelial dysfunction was assessed by vascular response to acetylcholine (ACh) and sodium nitroprusside (SNP). PM(10) exposure increased lung macrophages (P<0.02), macrophages containing particles (P<0.001), and activated macrophages (P<0.006). PM(10) increased serum IL-6 levels in the first 2 wk of exposure (P<0.05) but not in weeks 3 or 4. PM(10) exposure reduced ACh-related relaxation of the carotid artery with both acute and chronic exposure, with no effect on SNP-induced vasodilatation. Serum IL-6 levels correlated with macrophages containing particles (P=0.043) and ACh-induced vasodilatation (P=0.014 at week 1, P=0.021 at week 2). Exposure to PM(10) caused lung and systemic inflammation that were both associated with vascular endothelial dysfunction. This suggests that PM-induced lung and systemic inflammatory responses contribute to the adverse vascular events associated with exposure to air pollution.  相似文献   

9.
Emerging evidence now indicates that the 5-lipoxygenase (5-LO) pathway play a role in the pathogenesis of atherosclerosis and restenosis. The expression of 5-LO by activated macrophages in symptomatic plaques leads to leukotriene B(4) (LTB(4)) accumulation and enhanced synthesis and release of matrix metalloproteinases (MMPs) that can promote plaque rupture. However, the role of 5-LO pathway in diabetic vascular disease has not been previously reported. Thus, the present study was designed to analyze the expression of 5-LO in carotid plaques of diabetic patients and to investigate the possible role of 5-LO pathway in the pathogenesis and progression of diabetic atherosclerosis. Atherosclerotic plaques from 60 patients undergoing carotid endarterectomy were divided into non-diabetic and diabetic group. Plaques were analyzed for 5-LO, MMP-2 and MMP-9 by immunohistochemical, Western blot, and densitometric analyses, whereas zymography was used to detect MMP activity. Immunocytochemistry was also used to identify CD68+macrophages, CD3+T-lymphocytes, and HLA-DR+inflammatory cells. LTB(4) were quantified by enzyme-linked immunosorbent assay. 5-LO showed abundant immunoreactivity in human atherosclerotic carotid lesions, and was colocalized with macrophage infiltrates in atherosclerotic intima. 5-LO expression was higher in diabetic compared with non-diabetic plaques and was associated with increased MMP-2 and MMP-9 expression. Follow-up analyze with zymography assay revealed MMP activity was elevated in diabetic compared with non-diabetic plaques. Notably, in contrast to non-diabetic plaques, LTB(4) levels were significantly increased in diabetic plaques by enzyme-linked immunosorbent assay. These results suggest that overexpression of 5-LO and LTB(4) in atherosclerotic plaques possibly promote MMP-induced plaque rupture in diabetes. Hence, anti-LTs may be useful, not only in reducing atherogenesis, but also in the prevention and treatment of acute atherothrombotic events in diabetic patients.  相似文献   

10.
11.
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.  相似文献   

12.
We showed that metabolic disorders promote thiol oxidative stress in monocytes, priming monocytes for accelerated chemokine-induced recruitment, and accumulation at sites of vascular injury and the progression of atherosclerosis. The aim of this study was to identify both the source of reactive oxygen species (ROS) responsible for thiol oxidation in primed and dysfunctional monocytes and the molecular mechanisms through which ROS accelerate the migration and recruitment of monocyte-derived macrophages. We found that Nox4, a recently identified NADPH oxidase in monocytes and macrophages, localized to focal adhesions and the actin cytoskeleton, and associated with phospho-FAK, paxillin, and actin, implicating Nox4 in the regulation of monocyte adhesion and migration. We also identified Nox4 as a new, metabolic stress-inducible source of ROS that controls actin S-glutathionylation and turnover in monocytes and macrophages, providing a novel mechanistic link between Nox4-derived H2O2 and monocyte adhesion and migration. Actin associated with Nox4 was S-glutathionylated, and Nox4 association with actin was enhanced in metabolically-stressed monocytes. Metabolic stress induced Nox4 and accelerated monocyte adhesion and chemotaxis in a Nox4-dependent mechanism. In conclusion, our data suggest that monocytic Nox4 is a central regulator of actin dynamics, and induction of Nox4 is the rate-limiting step in metabolic stress-induced monocyte priming and dysfunction associated with accelerated atherosclerosis and the progression of atherosclerotic plaques.  相似文献   

13.
Exposure to ambient particulate matter (PM(10)) elicits systemic inflammatory responses that include the stimulation of bone marrow and progression of atherosclerosis. The present study was designed to assess the effect of repeated exposure of PM(10) on the turnover and release of polymorphonuclear leukocytes (PMNs) from the bone marrow into the circulation and the effect of lovastatin on the PM(10)-induced bone marrow stimulation. Rabbits exposed to PM(10) three times a week for 3 wk, were given a bolus of 5'-bromo-2'-deoxyuridine to label dividing cells in the marrow to calculate the transit time of PMNs in the mitotic or postmitotic pool. PM(10) exposure accelerated the turnover of PMNs by shortening their transit time through the marrow (64.8 ± 1.9 h vs. 34.3 ± 7.4 h, P < 0.001, control vs. PM(10)). This was predominantly due to a rapid transit of PMNs through the postmitotic pool (47.9 ± 0.7 h vs. 21.3 ± 4.3 h, P < 0.001, control vs. PM(10)) but not through the mitotic pool. Lovastatin delayed the transit time of postmitotic PMNs (38.2 ± 0.5 h, P < 0.001 vs. PM(10)) and shifted the postmitotic PMN release peak from 30 h to 48 h. PM(10) exposure induced the prolonged retention of newly released PMNs in the lung, which was reduced by lovastatin (P < 0.01). PM(10) exposure increased plasma interleukin-6 levels with significant reduction by lovastatin (P < 0.01). We conclude that lovastatin downregulates the PM(10)-induced overactive bone marrow by attenuating PM(10)-induced systemic inflammatory responses.  相似文献   

14.
Atherosclerosis is a pathological process that takes place in the major arteries and is the underlying cause of heart attacks, stroke and peripheral artery disease. The earliest detectable lesions, called fatty streaks, contain macrophage foam cells that are derived from recruited monocytes. More-advanced atherosclerotic lesions, called fibro-fatty plaques, are the result of continued monocyte recruitment and smooth muscle cell migration and proliferation. Variable numbers of CD4+ T cells are found in atherosclerotic lesions, and cytokines secreted by T helper 1 (Th1)- or Th2-type cells can have a profound influence on macrophage gene expression within atherosclerotic plaques. This review briefly addresses the key features of macrophage biology and discusses the factors that influence the growth and development of atherosclerotic lesions (atherogenesis). It then considers the potential role of chemokines in mediating monocyte recruitment and macrophage differentiation within atherosclerotic lesions.  相似文献   

15.
16.
The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G(alphai)- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition.  相似文献   

17.
Radiation exposure from a number of terrestrial sources is associated with an increased risk for atherosclerosis. Recently, concern over whether exposure to cosmic radiation might pose a similar risk for astronauts has increased. To address this question, we examined the effect of 2 to 5 Gy iron ions ((56)Fe), a particularly damaging component of cosmic radiation, targeted to specific arterial sites in male apolipoprotein E-deficient (apoE(-/-)) mice. Radiation accelerated the development of atherosclerosis in irradiated portions of the aorta independent of any systemic effects on plasma lipid profiles or circulating leukocytes. Further, radiation exposure resulted in a more rapid progression of advanced aortic root lesions, characterized by larger necrotic cores associated with greater numbers of apoptotic macrophages and reduced lesional collagen compared to sham-treated mice. Intima media thickening of the carotid arteries was also exacerbated. Exposure to (56)Fe ions can therefore accelerate the development of atherosclerotic lesions and promote their progression to an advanced stage characterized by compositional changes indicative of increased thrombogenicity and instability. We conclude that the potential consequences of radiation exposure for astronauts on prolonged deep-space missions are a major concern. Knowledge gained from further studies with animal models should lead to a better understanding of the pathophysiological effects of accelerated ion radiation to better estimate atherogenic risk and develop appropriate countermeasures to mitigate its damaging effects.  相似文献   

18.
Atherosclerosis, the leading cause of death in developed countries, has been linked to hypercholesterolemia for decades. More recently, atherosclerotic lesion progression has been shown to depend on persistent, chronic inflammation in the artery wall. Although several studies have implicated infectious agents in this process, the role of infection in atherosclerosis remains controversial. Because the involvement of monocytes and macrophages in the pathogenesis of atherosclerosis is well established, we investigated the possibility that macrophage innate immunity signaling pathways normally activated by pathogens might also be activated in response to hyperlipidemia. We examined atherosclerotic lesion development in uninfected, hyperlipidemic mice lacking expression of either lipopolysaccharide (LPS) receptor CD14 or myeloid differentiation protein-88 (MyD88), which transduces cell signaling events downstream of the Toll-like receptors (TLRs), as well as receptors for interleukin-1 (IL-1) and IL-18. Whereas the MyD88-deficient mice evinced a marked reduction in early atherosclerosis, mice deficient in CD14 had no decrease in early lesion development. Inactivation of the MyD88 pathway led to a reduction in atherosclerosis through a decrease in macrophage recruitment to the artery wall that was associated with reduced chemokine levels. These findings link elevated serum lipid levels to a proinflammatory signaling cascade that is also engaged by microbial pathogens.  相似文献   

19.
Recently, we developed myocardial infarction-prone WHHLMI rabbits from coronary atherosclerosis-prone WHHL rabbits (WHHLCA rabbits) by selective breeding. In this study, we examined the relation of atherosclerotic plaques to the onset of myocardial infarction. We examined myocardial lesions of 378 WHHL rabbits born between 1992 and 2000, and atherosclerosis lesions of 93 WHHLCA and 82 WHHLMI rabbits. The aortic lesions were evaluated as percent surface lesion area. The coronary lesions were evaluated as cross sectional narrowing using sections prepared at 500 or 1,000 microm intervals. Serum lipid levels were assayed with enzymatic methods. The cumulative incidence of fatal myocardial infarction between 11 and 35 months old was 90% in WHHLMI rabbits and 21% in WHHLCA rabbits, respectively. Selective breeding increased the serum cholesterol levels by about 200 mg/dl despite there being no changes in triglyceride levels. Aortic and coronary atherosclerosis progressed markedly in WHHLMI rabbits compared to WHHLCA rabbits. Especially, WHHLMI rabbits over 15 months old showed more than 90% cross sectional narrowing of the left circumflex arteries, main stem of the left coronary artery, and the origin portion of the right coronary artery. In addition, there were no gender differences in atherosclerotic lesions of both aortas and coronary arteries. In conclusion, the present study showed that marked progression of coronary atherosclerosis was probably associated with spontaneous development of myocardial infarction in WHHLMI rabbits.  相似文献   

20.
Smoking is an important risk factor for atherosclerosis. We compared tobacco smoke filtrate with benzo[a]pyrene (a prominent xenobiotic component of tobacco smoke) for the capacity to induce stress proteins and cause cell death in human monocytes and vascular endothelial cells, two cell types that are involved in the formation of atherosclerotic lesions. Exposure to freshly prepared filtrates of tobacco smoke induced in both monocytes and endothelial cells expression of the inducible heat shock protein (HSP)70 and heme oxygenase-1 (HO-1) and produced loss of mitochondrial membrane potential. Later, cell death by apoptosis or necrosis occurred depending on the concentration of tobacco smoke. These toxic effects could be prevented by the antioxidant N-acetylcysteine. In contrast, exposure of these cells to benzo[a]pyrene alone evoked neither stress proteins nor mitochondrial damage but did induce cell death by necrosis. Thus our results indicate that tobacco smoke rapidly induces complex oxidant-mediated stress responses in both vascular endothelial cells and circulating monocytes that are independent of the benzo[a]pyrene content of the smoke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号