首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pyruvate dehydrogenase kinase isoform 4 (PDK4) is upregulated by starvation in many tissues of the body during starvation. This causes inactivation of the pyruvate dehydrogenase complex which blocks pyruvate oxidation and conserves lactate and alanine for gluconeogenesis. Enhanced PDK4 expression may be caused by the increase in free fatty acids that occurs during starvation. Free fatty acids can activate peroxisome proliferator-activated receptor alpha (PPARalpha), and activation of PPARalpha can promote PDK4 expression. This model is supported by the findings reported here that WY-14,643, a synthetic PPARalpha activator, increases PDK4 expression in wild-type mice but not in PPARalpha-null mice. Starvation likewise increases the expression of PDK4 in tissues of wild-type mice but not in tissues of PPARalpha-null mice. These findings document the functional importance of PPARalpha for PDK4 expression during starvation and suggest an important role for elevated free fatty acids in the induction.  相似文献   

3.
The protein phosphatase calcineurin is a signaling intermediate that induces the transformation of fast-twitch skeletal muscle fibers to a slow-twitch phenotype. This reprogramming of the skeletal muscle gene expression profile may have therapeutic applications for metabolic disease. Insulin-stimulated glucose uptake in skeletal muscle is both impaired in individuals with type II diabetes mellitus and positively correlated with the percentage of slow- versus fast-twitch muscle fibers. Using transgenic mice expressing activated calcineurin in skeletal muscle, we report that skeletal muscle reprogramming by calcineurin activation leads to improved insulin-stimulated 2-deoxyglucose uptake in extensor digitorum longus (EDL) muscles compared with wild-type mice, concomitant with increased protein expression of the insulin receptor, Akt, glucose transporter 4, and peroxisome proliferator-activated receptor-gamma co-activator 1. Transgenic mice exhibited elevated glycogen deposition, enhanced amino acid uptake, and increased fatty acid oxidation in EDL muscle. When fed a high-fat diet, transgenic mice maintained superior rates of insulin-stimulated glucose uptake in EDL muscle and were protected against diet-induced glucose intolerance. These results validate calcineurin as a target for enhancing insulin action in skeletal muscle.  相似文献   

4.
5.
Hwang B  Wu P  Harris RA 《The FEBS journal》2012,279(10):1883-1893
Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency.  相似文献   

6.
7.
Severe influenza is characterized by cytokine storm and multiorgan failure with metabolic energy disorders and vascular hyperpermeability. In the regulation of energy homeostasis, the pyruvate dehydrogenase (PDH) complex plays an important role by catalyzing oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle and fatty acid synthesis, and thus its activity is linked to energy homeostasis. The present study tested the effects of diisopropylamine dichloroacetate (DADA), a new PDH kinase 4 (PDK4) inhibitor, in mice with severe influenza. Infection of mice with influenza A PR/8/34(H1N1) virus resulted in marked down-regulation of PDH activity and ATP level, with selective up-regulation of PDK4 in the skeletal muscles, heart, liver and lungs. Oral administration of DADA at 12-h intervals for 14 days starting immediately after infection significantly restored PDH activity and ATP level in various organs, and ameliorated disorders of glucose and lipid metabolism in the blood, together with marked improvement of survival and suppression of cytokine storm, trypsin up-regulation and viral replication. These results indicate that through PDK4 inhibition, DADA effectively suppresses the host metabolic disorder-cytokine cycle, which is closely linked to the influenza virus-cytokine-trypsin cycle, resulting in prevention of multiorgan failure in severe influenza.  相似文献   

8.
9.
10.
The possible role of calcineurin in cardiac hypertrophy induced by calmodulin (CaM) overexpression in the heart was investigated. CaM transgenic (CaM-TG) mice developed marked cardiac hypertrophy and exhibited up-regulation of atrial natriuretic factor (ANF) and beta-myosin heavy chain gene expression in the heart during the first 2 weeks after birth. The activity of calcineurin in the heart was also significantly increased in CaM-TG mice compared with wild-type littermates. Treatment of CaM-TG mice with the calcineurin inhibitor FK506 (1mg/kg per day) prevented the increase in the heart-to-body weight ratio as well as that in cardiomyocyte width. FK506 also inhibited the induction of fetal-type cardiac gene expression in CaM-TG mice. Overexpression of CaM in cultured rat cardiomyocytes activated the ANF gene promoter in a manner sensitive to FK506. Activation of a calcineurin-dependent pathway thus contributes to the development of cardiac hypertrophy induced by CaM overexpression in the heart.  相似文献   

11.
Apoptosis of cardiac myocytes is one of the causes of heart failure. Here we examine the mechanism by which the activation of beta-adrenergic receptor induces cardiomyocyte apoptosis. Terminal deoxynucleotide transferase-mediated dUTP nick end labeling and DNA ladder analyses revealed that isoproterenol (Iso) induced the apoptosis of cardiac myocytes of neonatal rats through an increase in intracellular Ca(2+) levels. The Iso-induced cardiomyocyte apoptosis was strongly inhibited by the L-type Ca(2+) channel antagonist nifedipine and by the calcineurin inhibitors cyclosporin A and FK506. Iso reduced the phosphorylation levels of the proapoptotic Bcl-2 family protein Bad and induced cytochrome c release from mitochondria to the cytosol through calcineurin activation. Infusion of Iso increased calcineurin activity by approximately 3-fold in the hearts of wild-type mice but not in the hearts of transgenic mice that overexpress dominant negative mutants of calcineurin. Terminal deoxynucleotide transferase-mediated dUTP nick end labeling analysis revealed that infusion of Iso induced apoptosis of cardiac myocytes and that the number of apoptotic cardiomyocytes was significantly less in the hearts of the transgenic mice compared with the wild-type mice. These results suggest that calcineurin plays a critical role in Iso-induced apoptosis of cardiac myocytes, possibly through dephosphorylating Bad.  相似文献   

12.
13.
14.
Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance of the heart on fatty acids for energy production.  相似文献   

15.
16.
17.
Introduction of the constitutively active calcineurin gene into neonatal rat cardiomyocytes by adenovirus resulted in decreased mitochondrial membrane potential (P < 0.05). Infection of H9c2 cells with calcineurin adenovirus resulted in increased superoxide production (P < 0.001). Transgenic mice with cardiac-specific expression of a constitutively active calcineurin cDNA (CalTG mice) exhibit a two- to threefold increase in heart size that progresses to heart failure. We prepared mitochondria enriched for the subsarcolemmal population from the hearts of CalTG mice and transgene negative littermates (control). Intact, well-coupled mitochondria prepared from one to two mouse hearts at a time yielded sufficient material for functional studies. Mitochondrial oxygen consumption was measured with a Clark-type oxygen electrode with substrates for mitochondrial complex II (succinate) and complex IV [tetramethylpentadecane (TMPD)/ascorbate]. CalTG mice exhibited a maximal rate of electron transfer in heart mitochondria that was reduced by approximately 50% (P < 0.002) without a loss of respiratory control. Mitochondrial respiration was unaffected in tropomodulin-overexpressing transgenic mice, another model of cardiomyopathy. Western blotting for mitochondrial electron transfer subunits from mitochondria of CalTG mice revealed a 20-30% reduction in subunit 3 of complex I (ND3) and subunits I and IV of cytochrome oxidase (CO-I, CO-IV) when normalized to total mitochondrial protein or to the adenine nucleotide transporter (ANT) and compared with littermate controls (P < 0.002). Impaired mitochondrial electron transport was associated with high levels of superoxide production in the CalTG mice. Taken together, these data indicate that calcineurin signaling affects mitochondrial energetics and superoxide production. The excessive production of superoxide may contribute to the development of cardiac failure.  相似文献   

18.
19.
The effect of pyruvate dehydrogenase kinase-4 (PDK4) deficiency on glucose homeostasis was studied in mice fed a high-fat diet. Expression of PDK4 was greatly increased in skeletal muscle and diaphragm but not liver and kidney of wild-type mice fed the high-fat diet. Wild-type and PDK4(-/-) mice consumed similar amounts of the diet and became equally obese. Insulin resistance developed in both groups. Nevertheless, fasting blood glucose levels were lower, glucose tolerance was slightly improved, and insulin sensitivity was slightly greater in the PDK4(-/-) mice compared with wild-type mice. When the mice were killed in the fed state, the actual activity of the pyruvate dehydrogenase complex (PDC) was higher in the skeletal muscle and diaphragm but not in the liver and kidney of PDK4(-/-) mice compared with wild-type mice. When the mice were killed after overnight fasting, the actual PDC activity was higher only in the kidney of PDK4(-/-) mice compared with wild-type mice. The concentrations of gluconeogenic substrates were lower in the blood of PDK4(-/-) mice compared with wild-type mice, consistent with reduced formation in peripheral tissues. Diaphragms isolated from PDK4(-/-) mice oxidized glucose faster and fatty acids slower than diaphragms from wild-type mice. Fatty acid oxidation inhibited glucose oxidation by diaphragms from wild-type but not PDK4(-/-) mice. NEFA, ketone bodies, and branched-chain amino acids were elevated more in PDK4(-/-) mice, consistent with slower rates of oxidation. These findings show that PDK4 deficiency lowers blood glucose and slightly improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.  相似文献   

20.
Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice. On normal diet, HSL-KO mice showed a twofold increase in hepatic insulin action but a 40% decrease in insulin-stimulated cardiac glucose uptake compared with wild-type littermates. High-fat feeding caused a similar increase in whole body fat mass in both groups of mice. Insulin-stimulated glucose uptake was reduced by 50-80% in skeletal muscle and heart of wild-type mice after high-fat feeding. In contrast, HSL-KO mice were protected from diet-induced insulin resistance in skeletal muscle and heart, and these effects were associated with reduced intramuscular triglyceride and fatty acyl-CoA levels in the fat-fed HSL-KO mice. Overall, these findings demonstrate the important role of HSL on skeletal muscle, heart, and liver glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号